Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casefun | Unicode version |
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casefun.f | |
casefun.g |
Ref | Expression |
---|---|
casefun | case |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casefun.f | . . . 4 | |
2 | djulf1o 7023 | . . . . . 6 inl | |
3 | f1of1 5431 | . . . . . 6 inl inl | |
4 | 2, 3 | ax-mp 5 | . . . . 5 inl |
5 | df-f1 5193 | . . . . . 6 inl inl inl | |
6 | 5 | simprbi 273 | . . . . 5 inl inl |
7 | 4, 6 | mp1i 10 | . . . 4 inl |
8 | funco 5228 | . . . 4 inl inl | |
9 | 1, 7, 8 | syl2anc 409 | . . 3 inl |
10 | casefun.g | . . . 4 | |
11 | djurf1o 7024 | . . . . . 6 inr | |
12 | f1of1 5431 | . . . . . 6 inr inr | |
13 | 11, 12 | ax-mp 5 | . . . . 5 inr |
14 | df-f1 5193 | . . . . . 6 inr inr inr | |
15 | 14 | simprbi 273 | . . . . 5 inr inr |
16 | 13, 15 | mp1i 10 | . . . 4 inr |
17 | funco 5228 | . . . 4 inr inr | |
18 | 10, 16, 17 | syl2anc 409 | . . 3 inr |
19 | dmcoss 4873 | . . . . . . 7 inl inl | |
20 | df-rn 4615 | . . . . . . 7 inl inl | |
21 | 19, 20 | sseqtrri 3177 | . . . . . 6 inl inl |
22 | dmcoss 4873 | . . . . . . 7 inr inr | |
23 | df-rn 4615 | . . . . . . 7 inr inr | |
24 | 22, 23 | sseqtrri 3177 | . . . . . 6 inr inr |
25 | ss2in 3350 | . . . . . 6 inl inl inr inr inl inr inl inr | |
26 | 21, 24, 25 | mp2an 423 | . . . . 5 inl inr inl inr |
27 | rnresv 5063 | . . . . . . . . 9 inl inl | |
28 | 27 | eqcomi 2169 | . . . . . . . 8 inl inl |
29 | rnresv 5063 | . . . . . . . . 9 inr inr | |
30 | 29 | eqcomi 2169 | . . . . . . . 8 inr inr |
31 | 28, 30 | ineq12i 3321 | . . . . . . 7 inl inr inl inr |
32 | djuinr 7028 | . . . . . . 7 inl inr | |
33 | 31, 32 | eqtri 2186 | . . . . . 6 inl inr |
34 | 33 | a1i 9 | . . . . 5 inl inr |
35 | 26, 34 | sseqtrid 3192 | . . . 4 inl inr |
36 | ss0 3449 | . . . 4 inl inr inl inr | |
37 | 35, 36 | syl 14 | . . 3 inl inr |
38 | funun 5232 | . . 3 inl inr inl inr inl inr | |
39 | 9, 18, 37, 38 | syl21anc 1227 | . 2 inl inr |
40 | df-case 7049 | . . 3 case inl inr | |
41 | 40 | funeqi 5209 | . 2 case inl inr |
42 | 39, 41 | sylibr 133 | 1 case |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cvv 2726 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cxp 4602 ccnv 4603 cdm 4604 crn 4605 cres 4606 ccom 4608 wfun 5182 wf 5184 wf1 5185 wf1o 5187 c1o 6377 inlcinl 7010 inrcinr 7011 casecdjucase 7048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: casef 7053 |
Copyright terms: Public domain | W3C validator |