ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun Unicode version

Theorem casefun 7160
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f  |-  ( ph  ->  Fun  F )
casefun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
casefun  |-  ( ph  ->  Fun case ( F ,  G ) )

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4  |-  ( ph  ->  Fun  F )
2 djulf1o 7133 . . . . . 6  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
3 f1of1 5506 . . . . . 6  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
42, 3ax-mp 5 . . . . 5  |- inl : _V -1-1-> ( { (/) }  X.  _V )
5 df-f1 5264 . . . . . 6  |-  (inl : _V
-1-1-> ( { (/) }  X.  _V )  <->  (inl : _V --> ( {
(/) }  X.  _V )  /\  Fun  `'inl ) )
65simprbi 275 . . . . 5  |-  (inl : _V
-1-1-> ( { (/) }  X.  _V )  ->  Fun  `'inl )
74, 6mp1i 10 . . . 4  |-  ( ph  ->  Fun  `'inl )
8 funco 5299 . . . 4  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
91, 7, 8syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
10 casefun.g . . . 4  |-  ( ph  ->  Fun  G )
11 djurf1o 7134 . . . . . 6  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
12 f1of1 5506 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1311, 12ax-mp 5 . . . . 5  |- inr : _V -1-1-> ( { 1o }  X.  _V )
14 df-f1 5264 . . . . . 6  |-  (inr : _V
-1-1-> ( { 1o }  X.  _V )  <->  (inr : _V
--> ( { 1o }  X.  _V )  /\  Fun  `'inr ) )
1514simprbi 275 . . . . 5  |-  (inr : _V
-1-1-> ( { 1o }  X.  _V )  ->  Fun  `'inr )
1613, 15mp1i 10 . . . 4  |-  ( ph  ->  Fun  `'inr )
17 funco 5299 . . . 4  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
1810, 16, 17syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
19 dmcoss 4936 . . . . . . 7  |-  dom  ( F  o.  `'inl )  C_ 
dom  `'inl
20 df-rn 4675 . . . . . . 7  |-  ran inl  =  dom  `'inl
2119, 20sseqtrri 3219 . . . . . 6  |-  dom  ( F  o.  `'inl )  C_ 
ran inl
22 dmcoss 4936 . . . . . . 7  |-  dom  ( G  o.  `'inr )  C_ 
dom  `'inr
23 df-rn 4675 . . . . . . 7  |-  ran inr  =  dom  `'inr
2422, 23sseqtrri 3219 . . . . . 6  |-  dom  ( G  o.  `'inr )  C_ 
ran inr
25 ss2in 3392 . . . . . 6  |-  ( ( dom  ( F  o.  `'inl )  C_  ran inl  /\  dom  ( G  o.  `'inr )  C_  ran inr )  ->  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr )
)  C_  ( ran inl  i^i 
ran inr ) )
2621, 24, 25mp2an 426 . . . . 5  |-  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  C_  ( ran inl  i^i  ran inr )
27 rnresv 5130 . . . . . . . . 9  |-  ran  (inl  |` 
_V )  =  ran inl
2827eqcomi 2200 . . . . . . . 8  |-  ran inl  =  ran  (inl  |`  _V )
29 rnresv 5130 . . . . . . . . 9  |-  ran  (inr  |` 
_V )  =  ran inr
3029eqcomi 2200 . . . . . . . 8  |-  ran inr  =  ran  (inr  |`  _V )
3128, 30ineq12i 3363 . . . . . . 7  |-  ( ran inl  i^i  ran inr )  =  ( ran  (inl  |`  _V )  i^i  ran  (inr  |`  _V )
)
32 djuinr 7138 . . . . . . 7  |-  ( ran  (inl  |`  _V )  i^i 
ran  (inr  |`  _V )
)  =  (/)
3331, 32eqtri 2217 . . . . . 6  |-  ( ran inl  i^i  ran inr )  =  (/)
3433a1i 9 . . . . 5  |-  ( ph  ->  ( ran inl  i^i  ran inr )  =  (/) )
3526, 34sseqtrid 3234 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `'inl )  i^i 
dom  ( G  o.  `'inr ) )  C_  (/) )
36 ss0 3492 . . . 4  |-  ( ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr )
)  C_  (/)  ->  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  =  (/) )
3735, 36syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `'inl )  i^i 
dom  ( G  o.  `'inr ) )  =  (/) )
38 funun 5303 . . 3  |-  ( ( ( Fun  ( F  o.  `'inl )  /\  Fun  ( G  o.  `'inr ) )  /\  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  =  (/) )  ->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
399, 18, 37, 38syl21anc 1248 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
40 df-case 7159 . . 3  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
4140funeqi 5280 . 2  |-  ( Fun case
( F ,  G
)  <->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
4239, 41sylibr 134 1  |-  ( ph  ->  Fun case ( F ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3451   {csn 3623    X. cxp 4662   `'ccnv 4663   dom cdm 4664   ran crn 4665    |` cres 4666    o. ccom 4668   Fun wfun 5253   -->wf 5255   -1-1->wf1 5256   -1-1-onto->wf1o 5258   1oc1o 6476  inlcinl 7120  inrcinr 7121  casecdjucase 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by:  casef  7163
  Copyright terms: Public domain W3C validator