| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > casefun | Unicode version | ||
| Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| casefun.f |
|
| casefun.g |
|
| Ref | Expression |
|---|---|
| casefun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | casefun.f |
. . . 4
| |
| 2 | djulf1o 7133 |
. . . . . 6
| |
| 3 | f1of1 5506 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | df-f1 5264 |
. . . . . 6
| |
| 6 | 5 | simprbi 275 |
. . . . 5
|
| 7 | 4, 6 | mp1i 10 |
. . . 4
|
| 8 | funco 5299 |
. . . 4
| |
| 9 | 1, 7, 8 | syl2anc 411 |
. . 3
|
| 10 | casefun.g |
. . . 4
| |
| 11 | djurf1o 7134 |
. . . . . 6
| |
| 12 | f1of1 5506 |
. . . . . 6
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . 5
|
| 14 | df-f1 5264 |
. . . . . 6
| |
| 15 | 14 | simprbi 275 |
. . . . 5
|
| 16 | 13, 15 | mp1i 10 |
. . . 4
|
| 17 | funco 5299 |
. . . 4
| |
| 18 | 10, 16, 17 | syl2anc 411 |
. . 3
|
| 19 | dmcoss 4936 |
. . . . . . 7
| |
| 20 | df-rn 4675 |
. . . . . . 7
| |
| 21 | 19, 20 | sseqtrri 3219 |
. . . . . 6
|
| 22 | dmcoss 4936 |
. . . . . . 7
| |
| 23 | df-rn 4675 |
. . . . . . 7
| |
| 24 | 22, 23 | sseqtrri 3219 |
. . . . . 6
|
| 25 | ss2in 3392 |
. . . . . 6
| |
| 26 | 21, 24, 25 | mp2an 426 |
. . . . 5
|
| 27 | rnresv 5130 |
. . . . . . . . 9
| |
| 28 | 27 | eqcomi 2200 |
. . . . . . . 8
|
| 29 | rnresv 5130 |
. . . . . . . . 9
| |
| 30 | 29 | eqcomi 2200 |
. . . . . . . 8
|
| 31 | 28, 30 | ineq12i 3363 |
. . . . . . 7
|
| 32 | djuinr 7138 |
. . . . . . 7
| |
| 33 | 31, 32 | eqtri 2217 |
. . . . . 6
|
| 34 | 33 | a1i 9 |
. . . . 5
|
| 35 | 26, 34 | sseqtrid 3234 |
. . . 4
|
| 36 | ss0 3492 |
. . . 4
| |
| 37 | 35, 36 | syl 14 |
. . 3
|
| 38 | funun 5303 |
. . 3
| |
| 39 | 9, 18, 37, 38 | syl21anc 1248 |
. 2
|
| 40 | df-case 7159 |
. . 3
| |
| 41 | 40 | funeqi 5280 |
. 2
|
| 42 | 39, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1st 6207 df-2nd 6208 df-1o 6483 df-inl 7122 df-inr 7123 df-case 7159 |
| This theorem is referenced by: casef 7163 |
| Copyright terms: Public domain | W3C validator |