Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casefun | Unicode version |
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casefun.f | |
casefun.g |
Ref | Expression |
---|---|
casefun | case |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casefun.f | . . . 4 | |
2 | djulf1o 7035 | . . . . . 6 inl | |
3 | f1of1 5441 | . . . . . 6 inl inl | |
4 | 2, 3 | ax-mp 5 | . . . . 5 inl |
5 | df-f1 5203 | . . . . . 6 inl inl inl | |
6 | 5 | simprbi 273 | . . . . 5 inl inl |
7 | 4, 6 | mp1i 10 | . . . 4 inl |
8 | funco 5238 | . . . 4 inl inl | |
9 | 1, 7, 8 | syl2anc 409 | . . 3 inl |
10 | casefun.g | . . . 4 | |
11 | djurf1o 7036 | . . . . . 6 inr | |
12 | f1of1 5441 | . . . . . 6 inr inr | |
13 | 11, 12 | ax-mp 5 | . . . . 5 inr |
14 | df-f1 5203 | . . . . . 6 inr inr inr | |
15 | 14 | simprbi 273 | . . . . 5 inr inr |
16 | 13, 15 | mp1i 10 | . . . 4 inr |
17 | funco 5238 | . . . 4 inr inr | |
18 | 10, 16, 17 | syl2anc 409 | . . 3 inr |
19 | dmcoss 4880 | . . . . . . 7 inl inl | |
20 | df-rn 4622 | . . . . . . 7 inl inl | |
21 | 19, 20 | sseqtrri 3182 | . . . . . 6 inl inl |
22 | dmcoss 4880 | . . . . . . 7 inr inr | |
23 | df-rn 4622 | . . . . . . 7 inr inr | |
24 | 22, 23 | sseqtrri 3182 | . . . . . 6 inr inr |
25 | ss2in 3355 | . . . . . 6 inl inl inr inr inl inr inl inr | |
26 | 21, 24, 25 | mp2an 424 | . . . . 5 inl inr inl inr |
27 | rnresv 5070 | . . . . . . . . 9 inl inl | |
28 | 27 | eqcomi 2174 | . . . . . . . 8 inl inl |
29 | rnresv 5070 | . . . . . . . . 9 inr inr | |
30 | 29 | eqcomi 2174 | . . . . . . . 8 inr inr |
31 | 28, 30 | ineq12i 3326 | . . . . . . 7 inl inr inl inr |
32 | djuinr 7040 | . . . . . . 7 inl inr | |
33 | 31, 32 | eqtri 2191 | . . . . . 6 inl inr |
34 | 33 | a1i 9 | . . . . 5 inl inr |
35 | 26, 34 | sseqtrid 3197 | . . . 4 inl inr |
36 | ss0 3455 | . . . 4 inl inr inl inr | |
37 | 35, 36 | syl 14 | . . 3 inl inr |
38 | funun 5242 | . . 3 inl inr inl inr inl inr | |
39 | 9, 18, 37, 38 | syl21anc 1232 | . 2 inl inr |
40 | df-case 7061 | . . 3 case inl inr | |
41 | 40 | funeqi 5219 | . 2 case inl inr |
42 | 39, 41 | sylibr 133 | 1 case |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cvv 2730 cun 3119 cin 3120 wss 3121 c0 3414 csn 3583 cxp 4609 ccnv 4610 cdm 4611 crn 4612 cres 4613 ccom 4615 wfun 5192 wf 5194 wf1 5195 wf1o 5197 c1o 6388 inlcinl 7022 inrcinr 7023 casecdjucase 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: casef 7065 |
Copyright terms: Public domain | W3C validator |