ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun Unicode version

Theorem casefun 6978
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f  |-  ( ph  ->  Fun  F )
casefun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
casefun  |-  ( ph  ->  Fun case ( F ,  G ) )

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4  |-  ( ph  ->  Fun  F )
2 djulf1o 6951 . . . . . 6  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
3 f1of1 5374 . . . . . 6  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
42, 3ax-mp 5 . . . . 5  |- inl : _V -1-1-> ( { (/) }  X.  _V )
5 df-f1 5136 . . . . . 6  |-  (inl : _V
-1-1-> ( { (/) }  X.  _V )  <->  (inl : _V --> ( {
(/) }  X.  _V )  /\  Fun  `'inl ) )
65simprbi 273 . . . . 5  |-  (inl : _V
-1-1-> ( { (/) }  X.  _V )  ->  Fun  `'inl )
74, 6mp1i 10 . . . 4  |-  ( ph  ->  Fun  `'inl )
8 funco 5171 . . . 4  |-  ( ( Fun  F  /\  Fun  `'inl )  ->  Fun  ( F  o.  `'inl ) )
91, 7, 8syl2anc 409 . . 3  |-  ( ph  ->  Fun  ( F  o.  `'inl ) )
10 casefun.g . . . 4  |-  ( ph  ->  Fun  G )
11 djurf1o 6952 . . . . . 6  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
12 f1of1 5374 . . . . . 6  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1311, 12ax-mp 5 . . . . 5  |- inr : _V -1-1-> ( { 1o }  X.  _V )
14 df-f1 5136 . . . . . 6  |-  (inr : _V
-1-1-> ( { 1o }  X.  _V )  <->  (inr : _V
--> ( { 1o }  X.  _V )  /\  Fun  `'inr ) )
1514simprbi 273 . . . . 5  |-  (inr : _V
-1-1-> ( { 1o }  X.  _V )  ->  Fun  `'inr )
1613, 15mp1i 10 . . . 4  |-  ( ph  ->  Fun  `'inr )
17 funco 5171 . . . 4  |-  ( ( Fun  G  /\  Fun  `'inr )  ->  Fun  ( G  o.  `'inr ) )
1810, 16, 17syl2anc 409 . . 3  |-  ( ph  ->  Fun  ( G  o.  `'inr ) )
19 dmcoss 4816 . . . . . . 7  |-  dom  ( F  o.  `'inl )  C_ 
dom  `'inl
20 df-rn 4558 . . . . . . 7  |-  ran inl  =  dom  `'inl
2119, 20sseqtrri 3137 . . . . . 6  |-  dom  ( F  o.  `'inl )  C_ 
ran inl
22 dmcoss 4816 . . . . . . 7  |-  dom  ( G  o.  `'inr )  C_ 
dom  `'inr
23 df-rn 4558 . . . . . . 7  |-  ran inr  =  dom  `'inr
2422, 23sseqtrri 3137 . . . . . 6  |-  dom  ( G  o.  `'inr )  C_ 
ran inr
25 ss2in 3309 . . . . . 6  |-  ( ( dom  ( F  o.  `'inl )  C_  ran inl  /\  dom  ( G  o.  `'inr )  C_  ran inr )  ->  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr )
)  C_  ( ran inl  i^i 
ran inr ) )
2621, 24, 25mp2an 423 . . . . 5  |-  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  C_  ( ran inl  i^i  ran inr )
27 rnresv 5006 . . . . . . . . 9  |-  ran  (inl  |` 
_V )  =  ran inl
2827eqcomi 2144 . . . . . . . 8  |-  ran inl  =  ran  (inl  |`  _V )
29 rnresv 5006 . . . . . . . . 9  |-  ran  (inr  |` 
_V )  =  ran inr
3029eqcomi 2144 . . . . . . . 8  |-  ran inr  =  ran  (inr  |`  _V )
3128, 30ineq12i 3280 . . . . . . 7  |-  ( ran inl  i^i  ran inr )  =  ( ran  (inl  |`  _V )  i^i  ran  (inr  |`  _V )
)
32 djuinr 6956 . . . . . . 7  |-  ( ran  (inl  |`  _V )  i^i 
ran  (inr  |`  _V )
)  =  (/)
3331, 32eqtri 2161 . . . . . 6  |-  ( ran inl  i^i  ran inr )  =  (/)
3433a1i 9 . . . . 5  |-  ( ph  ->  ( ran inl  i^i  ran inr )  =  (/) )
3526, 34sseqtrid 3152 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `'inl )  i^i 
dom  ( G  o.  `'inr ) )  C_  (/) )
36 ss0 3408 . . . 4  |-  ( ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr )
)  C_  (/)  ->  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  =  (/) )
3735, 36syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `'inl )  i^i 
dom  ( G  o.  `'inr ) )  =  (/) )
38 funun 5175 . . 3  |-  ( ( ( Fun  ( F  o.  `'inl )  /\  Fun  ( G  o.  `'inr ) )  /\  ( dom  ( F  o.  `'inl )  i^i  dom  ( G  o.  `'inr ) )  =  (/) )  ->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
399, 18, 37, 38syl21anc 1216 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
40 df-case 6977 . . 3  |- case ( F ,  G )  =  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr )
)
4140funeqi 5152 . 2  |-  ( Fun case
( F ,  G
)  <->  Fun  ( ( F  o.  `'inl )  u.  ( G  o.  `'inr ) ) )
4239, 41sylibr 133 1  |-  ( ph  ->  Fun case ( F ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332   _Vcvv 2689    u. cun 3074    i^i cin 3075    C_ wss 3076   (/)c0 3368   {csn 3532    X. cxp 4545   `'ccnv 4546   dom cdm 4547   ran crn 4548    |` cres 4549    o. ccom 4551   Fun wfun 5125   -->wf 5127   -1-1->wf1 5128   -1-1-onto->wf1o 5130   1oc1o 6314  inlcinl 6938  inrcinr 6939  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef  6981
  Copyright terms: Public domain W3C validator