ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj Unicode version

Theorem caseinj 6982
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r  |-  ( ph  ->  Fun  `' R )
caseinj.s  |-  ( ph  ->  Fun  `' S )
caseinj.disj  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
Assertion
Ref Expression
caseinj  |-  ( ph  ->  Fun  `'case ( R ,  S
) )

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 6940 . . . . . . 7  |- inl  =  ( y  e.  _V  |->  <. (/)
,  y >. )
21funmpt2 5170 . . . . . 6  |-  Fun inl
3 funcnvcnv 5190 . . . . . 6  |-  ( Fun inl  ->  Fun  `' `'inl )
42, 3ax-mp 5 . . . . 5  |-  Fun  `' `'inl
5 caseinj.r . . . . 5  |-  ( ph  ->  Fun  `' R )
6 funco 5171 . . . . 5  |-  ( ( Fun  `' `'inl  /\  Fun  `' R )  ->  Fun  ( `' `'inl  o.  `' R ) )
74, 5, 6sylancr 411 . . . 4  |-  ( ph  ->  Fun  ( `' `'inl  o.  `' R ) )
8 cnvco 4732 . . . . 5  |-  `' ( R  o.  `'inl )  =  ( `' `'inl  o.  `' R )
98funeqi 5152 . . . 4  |-  ( Fun  `' ( R  o.  `'inl )  <->  Fun  ( `' `'inl  o.  `' R ) )
107, 9sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( R  o.  `'inl ) )
11 df-inr 6941 . . . . . . 7  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
1211funmpt2 5170 . . . . . 6  |-  Fun inr
13 funcnvcnv 5190 . . . . . 6  |-  ( Fun inr  ->  Fun  `' `'inr )
1412, 13ax-mp 5 . . . . 5  |-  Fun  `' `'inr
15 caseinj.s . . . . 5  |-  ( ph  ->  Fun  `' S )
16 funco 5171 . . . . 5  |-  ( ( Fun  `' `'inr  /\  Fun  `' S )  ->  Fun  ( `' `'inr  o.  `' S ) )
1714, 15, 16sylancr 411 . . . 4  |-  ( ph  ->  Fun  ( `' `'inr  o.  `' S ) )
18 cnvco 4732 . . . . 5  |-  `' ( S  o.  `'inr )  =  ( `' `'inr  o.  `' S )
1918funeqi 5152 . . . 4  |-  ( Fun  `' ( S  o.  `'inr )  <->  Fun  ( `' `'inr  o.  `' S ) )
2017, 19sylibr 133 . . 3  |-  ( ph  ->  Fun  `' ( S  o.  `'inr ) )
21 df-rn 4558 . . . . . . 7  |-  ran  ( R  o.  `'inl )  =  dom  `' ( R  o.  `'inl )
22 rncoss 4817 . . . . . . 7  |-  ran  ( R  o.  `'inl )  C_ 
ran  R
2321, 22eqsstrri 3135 . . . . . 6  |-  dom  `' ( R  o.  `'inl )  C_  ran  R
24 df-rn 4558 . . . . . . 7  |-  ran  ( S  o.  `'inr )  =  dom  `' ( S  o.  `'inr )
25 rncoss 4817 . . . . . . 7  |-  ran  ( S  o.  `'inr )  C_ 
ran  S
2624, 25eqsstrri 3135 . . . . . 6  |-  dom  `' ( S  o.  `'inr )  C_  ran  S
27 ss2in 3309 . . . . . 6  |-  ( ( dom  `' ( R  o.  `'inl )  C_  ran  R  /\  dom  `' ( S  o.  `'inr )  C_  ran  S )  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr )
)  C_  ( ran  R  i^i  ran  S )
)
2823, 26, 27mp2an 423 . . . . 5  |-  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  C_  ( ran  R  i^i  ran  S
)
29 caseinj.disj . . . . 5  |-  ( ph  ->  ( ran  R  i^i  ran 
S )  =  (/) )
3028, 29sseqtrid 3152 . . . 4  |-  ( ph  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) ) 
C_  (/) )
31 ss0 3408 . . . 4  |-  ( ( dom  `' ( R  o.  `'inl )  i^i 
dom  `' ( S  o.  `'inr ) )  C_  (/)  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  =  (/) )
3230, 31syl 14 . . 3  |-  ( ph  ->  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr ) )  =  (/) )
33 funun 5175 . . 3  |-  ( ( ( Fun  `' ( R  o.  `'inl )  /\  Fun  `' ( S  o.  `'inr ) )  /\  ( dom  `' ( R  o.  `'inl )  i^i  dom  `' ( S  o.  `'inr )
)  =  (/) )  ->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
3410, 20, 32, 33syl21anc 1216 . 2  |-  ( ph  ->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
35 df-case 6977 . . . . 5  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
3635cnveqi 4722 . . . 4  |-  `'case ( R ,  S )  =  `' ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )
37 cnvun 4952 . . . 4  |-  `' ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  =  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) )
3836, 37eqtri 2161 . . 3  |-  `'case ( R ,  S )  =  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) )
3938funeqi 5152 . 2  |-  ( Fun  `'case ( R ,  S
)  <->  Fun  ( `' ( R  o.  `'inl )  u.  `' ( S  o.  `'inr ) ) )
4034, 39sylibr 133 1  |-  ( ph  ->  Fun  `'case ( R ,  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332   _Vcvv 2689    u. cun 3074    i^i cin 3075    C_ wss 3076   (/)c0 3368   <.cop 3535   `'ccnv 4546   dom cdm 4547   ran crn 4548    o. ccom 4551   Fun wfun 5125   1oc1o 6314  inlcinl 6938  inrcinr 6939  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef1  6983
  Copyright terms: Public domain W3C validator