Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caseinj | Unicode version |
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
caseinj.r | |
caseinj.s | |
caseinj.disj |
Ref | Expression |
---|---|
caseinj | case |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7012 | . . . . . . 7 inl | |
2 | 1 | funmpt2 5227 | . . . . . 6 inl |
3 | funcnvcnv 5247 | . . . . . 6 inl inl | |
4 | 2, 3 | ax-mp 5 | . . . . 5 inl |
5 | caseinj.r | . . . . 5 | |
6 | funco 5228 | . . . . 5 inl inl | |
7 | 4, 5, 6 | sylancr 411 | . . . 4 inl |
8 | cnvco 4789 | . . . . 5 inl inl | |
9 | 8 | funeqi 5209 | . . . 4 inl inl |
10 | 7, 9 | sylibr 133 | . . 3 inl |
11 | df-inr 7013 | . . . . . . 7 inr | |
12 | 11 | funmpt2 5227 | . . . . . 6 inr |
13 | funcnvcnv 5247 | . . . . . 6 inr inr | |
14 | 12, 13 | ax-mp 5 | . . . . 5 inr |
15 | caseinj.s | . . . . 5 | |
16 | funco 5228 | . . . . 5 inr inr | |
17 | 14, 15, 16 | sylancr 411 | . . . 4 inr |
18 | cnvco 4789 | . . . . 5 inr inr | |
19 | 18 | funeqi 5209 | . . . 4 inr inr |
20 | 17, 19 | sylibr 133 | . . 3 inr |
21 | df-rn 4615 | . . . . . . 7 inl inl | |
22 | rncoss 4874 | . . . . . . 7 inl | |
23 | 21, 22 | eqsstrri 3175 | . . . . . 6 inl |
24 | df-rn 4615 | . . . . . . 7 inr inr | |
25 | rncoss 4874 | . . . . . . 7 inr | |
26 | 24, 25 | eqsstrri 3175 | . . . . . 6 inr |
27 | ss2in 3350 | . . . . . 6 inl inr inl inr | |
28 | 23, 26, 27 | mp2an 423 | . . . . 5 inl inr |
29 | caseinj.disj | . . . . 5 | |
30 | 28, 29 | sseqtrid 3192 | . . . 4 inl inr |
31 | ss0 3449 | . . . 4 inl inr inl inr | |
32 | 30, 31 | syl 14 | . . 3 inl inr |
33 | funun 5232 | . . 3 inl inr inl inr inl inr | |
34 | 10, 20, 32, 33 | syl21anc 1227 | . 2 inl inr |
35 | df-case 7049 | . . . . 5 case inl inr | |
36 | 35 | cnveqi 4779 | . . . 4 case inl inr |
37 | cnvun 5009 | . . . 4 inl inr inl inr | |
38 | 36, 37 | eqtri 2186 | . . 3 case inl inr |
39 | 38 | funeqi 5209 | . 2 case inl inr |
40 | 34, 39 | sylibr 133 | 1 case |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cvv 2726 cun 3114 cin 3115 wss 3116 c0 3409 cop 3579 ccnv 4603 cdm 4604 crn 4605 ccom 4608 wfun 5182 c1o 6377 inlcinl 7010 inrcinr 7011 casecdjucase 7048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: casef1 7055 |
Copyright terms: Public domain | W3C validator |