ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun Unicode version

Theorem djufun 7105
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f  |-  ( ph  ->  Fun  F )
djufun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
djufun  |-  ( ph  ->  Fun  ( F ⊔d  G ) )

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4  |-  ( ph  ->  Fun  F )
2 inlresf1 7062 . . . . 5  |-  (inl  |`  dom  F
) : dom  F -1-1-> ( dom  F dom  G )
3 df-f1 5223 . . . . . 6  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  <->  ( (inl  |` 
dom  F ) : dom  F --> ( dom 
F dom  G )  /\  Fun  `' (inl  |`  dom  F
) ) )
43simprbi 275 . . . . 5  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inl  |`  dom  F
) )
52, 4mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inl  |`  dom  F
) )
6 funco 5258 . . . 4  |-  ( ( Fun  F  /\  Fun  `' (inl  |`  dom  F ) )  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
71, 5, 6syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
8 djufun.g . . . 4  |-  ( ph  ->  Fun  G )
9 inrresf1 7063 . . . . 5  |-  (inr  |`  dom  G
) : dom  G -1-1-> ( dom  F dom  G )
10 df-f1 5223 . . . . . 6  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  <->  ( (inr  |` 
dom  G ) : dom  G --> ( dom 
F dom  G )  /\  Fun  `' (inr  |`  dom  G
) ) )
1110simprbi 275 . . . . 5  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inr  |`  dom  G
) )
129, 11mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inr  |`  dom  G
) )
13 funco 5258 . . . 4  |-  ( ( Fun  G  /\  Fun  `' (inr  |`  dom  G ) )  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
148, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
15 dmcoss 4898 . . . . . . 7  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  dom  `' (inl  |` 
dom  F )
16 df-rn 4639 . . . . . . 7  |-  ran  (inl  |` 
dom  F )  =  dom  `' (inl  |`  dom  F
)
1715, 16sseqtrri 3192 . . . . . 6  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  ran  (inl  |`  dom  F
)
18 dmcoss 4898 . . . . . . 7  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  dom  `' (inr  |` 
dom  G )
19 df-rn 4639 . . . . . . 7  |-  ran  (inr  |` 
dom  G )  =  dom  `' (inr  |`  dom  G
)
2018, 19sseqtrri 3192 . . . . . 6  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  ran  (inr  |`  dom  G
)
21 ss2in 3365 . . . . . 6  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  C_  ran  (inl  |`  dom  F )  /\  dom  ( G  o.  `' (inr  |`  dom  G
) )  C_  ran  (inr  |`  dom  G ) )  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) ) )
2217, 20, 21mp2an 426 . . . . 5  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )
23 djuinr 7064 . . . . . 6  |-  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )  =  (/)
2423a1i 9 . . . . 5  |-  ( ph  ->  ( ran  (inl  |`  dom  F
)  i^i  ran  (inr  |`  dom  G
) )  =  (/) )
2522, 24sseqtrid 3207 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/) )
26 ss0 3465 . . . 4  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/)  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )
2725, 26syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  =  (/) )
28 funun 5262 . . 3  |-  ( ( ( Fun  ( F  o.  `' (inl  |`  dom  F
) )  /\  Fun  ( G  o.  `' (inr  |`  dom  G ) ) )  /\  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
297, 14, 27, 28syl21anc 1237 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
30 df-djud 7104 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
3130funeqi 5239 . 2  |-  ( Fun  ( F ⊔d  G )  <->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
3229, 31sylibr 134 1  |-  ( ph  ->  Fun  ( F ⊔d  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   `'ccnv 4627   dom cdm 4628   ran crn 4629    |` cres 4630    o. ccom 4632   Fun wfun 5212   -->wf 5214   -1-1->wf1 5215   ⊔ cdju 7038  inlcinl 7046  inrcinr 7047   ⊔d cdjud 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049  df-djud 7104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator