Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djufun | Unicode version |
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
djufun.f | |
djufun.g |
Ref | Expression |
---|---|
djufun | ⊔d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djufun.f | . . . 4 | |
2 | inlresf1 7026 | . . . . 5 inl ⊔ | |
3 | df-f1 5193 | . . . . . 6 inl ⊔ inl ⊔ inl | |
4 | 3 | simprbi 273 | . . . . 5 inl ⊔ inl |
5 | 2, 4 | mp1i 10 | . . . 4 inl |
6 | funco 5228 | . . . 4 inl inl | |
7 | 1, 5, 6 | syl2anc 409 | . . 3 inl |
8 | djufun.g | . . . 4 | |
9 | inrresf1 7027 | . . . . 5 inr ⊔ | |
10 | df-f1 5193 | . . . . . 6 inr ⊔ inr ⊔ inr | |
11 | 10 | simprbi 273 | . . . . 5 inr ⊔ inr |
12 | 9, 11 | mp1i 10 | . . . 4 inr |
13 | funco 5228 | . . . 4 inr inr | |
14 | 8, 12, 13 | syl2anc 409 | . . 3 inr |
15 | dmcoss 4873 | . . . . . . 7 inl inl | |
16 | df-rn 4615 | . . . . . . 7 inl inl | |
17 | 15, 16 | sseqtrri 3177 | . . . . . 6 inl inl |
18 | dmcoss 4873 | . . . . . . 7 inr inr | |
19 | df-rn 4615 | . . . . . . 7 inr inr | |
20 | 18, 19 | sseqtrri 3177 | . . . . . 6 inr inr |
21 | ss2in 3350 | . . . . . 6 inl inl inr inr inl inr inl inr | |
22 | 17, 20, 21 | mp2an 423 | . . . . 5 inl inr inl inr |
23 | djuinr 7028 | . . . . . 6 inl inr | |
24 | 23 | a1i 9 | . . . . 5 inl inr |
25 | 22, 24 | sseqtrid 3192 | . . . 4 inl inr |
26 | ss0 3449 | . . . 4 inl inr inl inr | |
27 | 25, 26 | syl 14 | . . 3 inl inr |
28 | funun 5232 | . . 3 inl inr inl inr inl inr | |
29 | 7, 14, 27, 28 | syl21anc 1227 | . 2 inl inr |
30 | df-djud 7068 | . . 3 ⊔d inl inr | |
31 | 30 | funeqi 5209 | . 2 ⊔d inl inr |
32 | 29, 31 | sylibr 133 | 1 ⊔d |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cun 3114 cin 3115 wss 3116 c0 3409 ccnv 4603 cdm 4604 crn 4605 cres 4606 ccom 4608 wfun 5182 wf 5184 wf1 5185 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 ⊔d cdjud 7067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-djud 7068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |