ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun Unicode version

Theorem djufun 7271
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f  |-  ( ph  ->  Fun  F )
djufun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
djufun  |-  ( ph  ->  Fun  ( F ⊔d  G ) )

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4  |-  ( ph  ->  Fun  F )
2 inlresf1 7228 . . . . 5  |-  (inl  |`  dom  F
) : dom  F -1-1-> ( dom  F dom  G )
3 df-f1 5323 . . . . . 6  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  <->  ( (inl  |` 
dom  F ) : dom  F --> ( dom 
F dom  G )  /\  Fun  `' (inl  |`  dom  F
) ) )
43simprbi 275 . . . . 5  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inl  |`  dom  F
) )
52, 4mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inl  |`  dom  F
) )
6 funco 5358 . . . 4  |-  ( ( Fun  F  /\  Fun  `' (inl  |`  dom  F ) )  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
71, 5, 6syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
8 djufun.g . . . 4  |-  ( ph  ->  Fun  G )
9 inrresf1 7229 . . . . 5  |-  (inr  |`  dom  G
) : dom  G -1-1-> ( dom  F dom  G )
10 df-f1 5323 . . . . . 6  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  <->  ( (inr  |` 
dom  G ) : dom  G --> ( dom 
F dom  G )  /\  Fun  `' (inr  |`  dom  G
) ) )
1110simprbi 275 . . . . 5  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inr  |`  dom  G
) )
129, 11mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inr  |`  dom  G
) )
13 funco 5358 . . . 4  |-  ( ( Fun  G  /\  Fun  `' (inr  |`  dom  G ) )  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
148, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
15 dmcoss 4994 . . . . . . 7  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  dom  `' (inl  |` 
dom  F )
16 df-rn 4730 . . . . . . 7  |-  ran  (inl  |` 
dom  F )  =  dom  `' (inl  |`  dom  F
)
1715, 16sseqtrri 3259 . . . . . 6  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  ran  (inl  |`  dom  F
)
18 dmcoss 4994 . . . . . . 7  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  dom  `' (inr  |` 
dom  G )
19 df-rn 4730 . . . . . . 7  |-  ran  (inr  |` 
dom  G )  =  dom  `' (inr  |`  dom  G
)
2018, 19sseqtrri 3259 . . . . . 6  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  ran  (inr  |`  dom  G
)
21 ss2in 3432 . . . . . 6  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  C_  ran  (inl  |`  dom  F )  /\  dom  ( G  o.  `' (inr  |`  dom  G
) )  C_  ran  (inr  |`  dom  G ) )  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) ) )
2217, 20, 21mp2an 426 . . . . 5  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )
23 djuinr 7230 . . . . . 6  |-  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )  =  (/)
2423a1i 9 . . . . 5  |-  ( ph  ->  ( ran  (inl  |`  dom  F
)  i^i  ran  (inr  |`  dom  G
) )  =  (/) )
2522, 24sseqtrid 3274 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/) )
26 ss0 3532 . . . 4  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/)  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )
2725, 26syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  =  (/) )
28 funun 5362 . . 3  |-  ( ( ( Fun  ( F  o.  `' (inl  |`  dom  F
) )  /\  Fun  ( G  o.  `' (inr  |`  dom  G ) ) )  /\  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
297, 14, 27, 28syl21anc 1270 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
30 df-djud 7270 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
3130funeqi 5339 . 2  |-  ( Fun  ( F ⊔d  G )  <->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
3229, 31sylibr 134 1  |-  ( ph  ->  Fun  ( F ⊔d  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195    i^i cin 3196    C_ wss 3197   (/)c0 3491   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721    o. ccom 4723   Fun wfun 5312   -->wf 5314   -1-1->wf1 5315   ⊔ cdju 7204  inlcinl 7212  inrcinr 7213   ⊔d cdjud 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215  df-djud 7270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator