Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djufun | Unicode version |
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
djufun.f | |
djufun.g |
Ref | Expression |
---|---|
djufun | ⊔d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djufun.f | . . . 4 | |
2 | inlresf1 7050 | . . . . 5 inl ⊔ | |
3 | df-f1 5213 | . . . . . 6 inl ⊔ inl ⊔ inl | |
4 | 3 | simprbi 275 | . . . . 5 inl ⊔ inl |
5 | 2, 4 | mp1i 10 | . . . 4 inl |
6 | funco 5248 | . . . 4 inl inl | |
7 | 1, 5, 6 | syl2anc 411 | . . 3 inl |
8 | djufun.g | . . . 4 | |
9 | inrresf1 7051 | . . . . 5 inr ⊔ | |
10 | df-f1 5213 | . . . . . 6 inr ⊔ inr ⊔ inr | |
11 | 10 | simprbi 275 | . . . . 5 inr ⊔ inr |
12 | 9, 11 | mp1i 10 | . . . 4 inr |
13 | funco 5248 | . . . 4 inr inr | |
14 | 8, 12, 13 | syl2anc 411 | . . 3 inr |
15 | dmcoss 4889 | . . . . . . 7 inl inl | |
16 | df-rn 4631 | . . . . . . 7 inl inl | |
17 | 15, 16 | sseqtrri 3188 | . . . . . 6 inl inl |
18 | dmcoss 4889 | . . . . . . 7 inr inr | |
19 | df-rn 4631 | . . . . . . 7 inr inr | |
20 | 18, 19 | sseqtrri 3188 | . . . . . 6 inr inr |
21 | ss2in 3361 | . . . . . 6 inl inl inr inr inl inr inl inr | |
22 | 17, 20, 21 | mp2an 426 | . . . . 5 inl inr inl inr |
23 | djuinr 7052 | . . . . . 6 inl inr | |
24 | 23 | a1i 9 | . . . . 5 inl inr |
25 | 22, 24 | sseqtrid 3203 | . . . 4 inl inr |
26 | ss0 3461 | . . . 4 inl inr inl inr | |
27 | 25, 26 | syl 14 | . . 3 inl inr |
28 | funun 5252 | . . 3 inl inr inl inr inl inr | |
29 | 7, 14, 27, 28 | syl21anc 1237 | . 2 inl inr |
30 | df-djud 7092 | . . 3 ⊔d inl inr | |
31 | 30 | funeqi 5229 | . 2 ⊔d inl inr |
32 | 29, 31 | sylibr 134 | 1 ⊔d |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 cun 3125 cin 3126 wss 3127 c0 3420 ccnv 4619 cdm 4620 crn 4621 cres 4622 ccom 4624 wfun 5202 wf 5204 wf1 5205 ⊔ cdju 7026 inlcinl 7034 inrcinr 7035 ⊔d cdjud 7091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1st 6131 df-2nd 6132 df-1o 6407 df-dju 7027 df-inl 7036 df-inr 7037 df-djud 7092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |