ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun Unicode version

Theorem djufun 7093
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f  |-  ( ph  ->  Fun  F )
djufun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
djufun  |-  ( ph  ->  Fun  ( F ⊔d  G ) )

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4  |-  ( ph  ->  Fun  F )
2 inlresf1 7050 . . . . 5  |-  (inl  |`  dom  F
) : dom  F -1-1-> ( dom  F dom  G )
3 df-f1 5213 . . . . . 6  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  <->  ( (inl  |` 
dom  F ) : dom  F --> ( dom 
F dom  G )  /\  Fun  `' (inl  |`  dom  F
) ) )
43simprbi 275 . . . . 5  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inl  |`  dom  F
) )
52, 4mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inl  |`  dom  F
) )
6 funco 5248 . . . 4  |-  ( ( Fun  F  /\  Fun  `' (inl  |`  dom  F ) )  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
71, 5, 6syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
8 djufun.g . . . 4  |-  ( ph  ->  Fun  G )
9 inrresf1 7051 . . . . 5  |-  (inr  |`  dom  G
) : dom  G -1-1-> ( dom  F dom  G )
10 df-f1 5213 . . . . . 6  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  <->  ( (inr  |` 
dom  G ) : dom  G --> ( dom 
F dom  G )  /\  Fun  `' (inr  |`  dom  G
) ) )
1110simprbi 275 . . . . 5  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inr  |`  dom  G
) )
129, 11mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inr  |`  dom  G
) )
13 funco 5248 . . . 4  |-  ( ( Fun  G  /\  Fun  `' (inr  |`  dom  G ) )  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
148, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
15 dmcoss 4889 . . . . . . 7  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  dom  `' (inl  |` 
dom  F )
16 df-rn 4631 . . . . . . 7  |-  ran  (inl  |` 
dom  F )  =  dom  `' (inl  |`  dom  F
)
1715, 16sseqtrri 3188 . . . . . 6  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  ran  (inl  |`  dom  F
)
18 dmcoss 4889 . . . . . . 7  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  dom  `' (inr  |` 
dom  G )
19 df-rn 4631 . . . . . . 7  |-  ran  (inr  |` 
dom  G )  =  dom  `' (inr  |`  dom  G
)
2018, 19sseqtrri 3188 . . . . . 6  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  ran  (inr  |`  dom  G
)
21 ss2in 3361 . . . . . 6  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  C_  ran  (inl  |`  dom  F )  /\  dom  ( G  o.  `' (inr  |`  dom  G
) )  C_  ran  (inr  |`  dom  G ) )  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) ) )
2217, 20, 21mp2an 426 . . . . 5  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )
23 djuinr 7052 . . . . . 6  |-  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )  =  (/)
2423a1i 9 . . . . 5  |-  ( ph  ->  ( ran  (inl  |`  dom  F
)  i^i  ran  (inr  |`  dom  G
) )  =  (/) )
2522, 24sseqtrid 3203 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/) )
26 ss0 3461 . . . 4  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/)  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )
2725, 26syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  =  (/) )
28 funun 5252 . . 3  |-  ( ( ( Fun  ( F  o.  `' (inl  |`  dom  F
) )  /\  Fun  ( G  o.  `' (inr  |`  dom  G ) ) )  /\  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
297, 14, 27, 28syl21anc 1237 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
30 df-djud 7092 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
3130funeqi 5229 . 2  |-  ( Fun  ( F ⊔d  G )  <->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
3229, 31sylibr 134 1  |-  ( ph  ->  Fun  ( F ⊔d  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3125    i^i cin 3126    C_ wss 3127   (/)c0 3420   `'ccnv 4619   dom cdm 4620   ran crn 4621    |` cres 4622    o. ccom 4624   Fun wfun 5202   -->wf 5204   -1-1->wf1 5205   ⊔ cdju 7026  inlcinl 7034  inrcinr 7035   ⊔d cdjud 7091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1st 6131  df-2nd 6132  df-1o 6407  df-dju 7027  df-inl 7036  df-inr 7037  df-djud 7092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator