ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun Unicode version

Theorem djufun 7163
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f  |-  ( ph  ->  Fun  F )
djufun.g  |-  ( ph  ->  Fun  G )
Assertion
Ref Expression
djufun  |-  ( ph  ->  Fun  ( F ⊔d  G ) )

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4  |-  ( ph  ->  Fun  F )
2 inlresf1 7120 . . . . 5  |-  (inl  |`  dom  F
) : dom  F -1-1-> ( dom  F dom  G )
3 df-f1 5259 . . . . . 6  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  <->  ( (inl  |` 
dom  F ) : dom  F --> ( dom 
F dom  G )  /\  Fun  `' (inl  |`  dom  F
) ) )
43simprbi 275 . . . . 5  |-  ( (inl  |`  dom  F ) : dom  F -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inl  |`  dom  F
) )
52, 4mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inl  |`  dom  F
) )
6 funco 5294 . . . 4  |-  ( ( Fun  F  /\  Fun  `' (inl  |`  dom  F ) )  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
71, 5, 6syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( F  o.  `' (inl  |`  dom  F
) ) )
8 djufun.g . . . 4  |-  ( ph  ->  Fun  G )
9 inrresf1 7121 . . . . 5  |-  (inr  |`  dom  G
) : dom  G -1-1-> ( dom  F dom  G )
10 df-f1 5259 . . . . . 6  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  <->  ( (inr  |` 
dom  G ) : dom  G --> ( dom 
F dom  G )  /\  Fun  `' (inr  |`  dom  G
) ) )
1110simprbi 275 . . . . 5  |-  ( (inr  |`  dom  G ) : dom  G -1-1-> ( dom 
F dom  G )  ->  Fun  `' (inr  |`  dom  G
) )
129, 11mp1i 10 . . . 4  |-  ( ph  ->  Fun  `' (inr  |`  dom  G
) )
13 funco 5294 . . . 4  |-  ( ( Fun  G  /\  Fun  `' (inr  |`  dom  G ) )  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
148, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  Fun  ( G  o.  `' (inr  |`  dom  G
) ) )
15 dmcoss 4931 . . . . . . 7  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  dom  `' (inl  |` 
dom  F )
16 df-rn 4670 . . . . . . 7  |-  ran  (inl  |` 
dom  F )  =  dom  `' (inl  |`  dom  F
)
1715, 16sseqtrri 3214 . . . . . 6  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) ) 
C_  ran  (inl  |`  dom  F
)
18 dmcoss 4931 . . . . . . 7  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  dom  `' (inr  |` 
dom  G )
19 df-rn 4670 . . . . . . 7  |-  ran  (inr  |` 
dom  G )  =  dom  `' (inr  |`  dom  G
)
2018, 19sseqtrri 3214 . . . . . 6  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) ) 
C_  ran  (inr  |`  dom  G
)
21 ss2in 3387 . . . . . 6  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  C_  ran  (inl  |`  dom  F )  /\  dom  ( G  o.  `' (inr  |`  dom  G
) )  C_  ran  (inr  |`  dom  G ) )  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) ) )
2217, 20, 21mp2an 426 . . . . 5  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  C_  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )
23 djuinr 7122 . . . . . 6  |-  ( ran  (inl  |`  dom  F )  i^i  ran  (inr  |`  dom  G
) )  =  (/)
2423a1i 9 . . . . 5  |-  ( ph  ->  ( ran  (inl  |`  dom  F
)  i^i  ran  (inr  |`  dom  G
) )  =  (/) )
2522, 24sseqtrid 3229 . . . 4  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/) )
26 ss0 3487 . . . 4  |-  ( ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  C_  (/)  ->  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )
2725, 26syl 14 . . 3  |-  ( ph  ->  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  i^i  dom  ( G  o.  `' (inr  |`  dom  G ) ) )  =  (/) )
28 funun 5298 . . 3  |-  ( ( ( Fun  ( F  o.  `' (inl  |`  dom  F
) )  /\  Fun  ( G  o.  `' (inr  |`  dom  G ) ) )  /\  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  i^i  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  (/) )  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
297, 14, 27, 28syl21anc 1248 . 2  |-  ( ph  ->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
30 df-djud 7162 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
3130funeqi 5275 . 2  |-  ( Fun  ( F ⊔d  G )  <->  Fun  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) ) )
3229, 31sylibr 134 1  |-  ( ph  ->  Fun  ( F ⊔d  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3446   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661    o. ccom 4663   Fun wfun 5248   -->wf 5250   -1-1->wf1 5251   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105   ⊔d cdjud 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-djud 7162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator