| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssalel | Unicode version | ||
| Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| ssalel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss 3182 |
. . 3
| |
| 2 | df-in 3174 |
. . . 4
| |
| 3 | 2 | eqeq2i 2217 |
. . 3
|
| 4 | abeq2 2315 |
. . 3
| |
| 5 | 1, 3, 4 | 3bitri 206 |
. 2
|
| 6 | pm4.71 389 |
. . 3
| |
| 7 | 6 | albii 1494 |
. 2
|
| 8 | 5, 7 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: dfss3 3184 dfss2f 3186 ssel 3189 ssriv 3199 ssrdv 3201 sstr2 3202 eqss 3210 nssr 3255 rabss2 3278 ssconb 3308 ssequn1 3345 unss 3349 ssin 3397 ssddif 3409 reldisj 3514 ssdif0im 3527 inssdif0im 3530 ssundifim 3546 sbcssg 3571 pwss 3634 snssOLD 3762 snssb 3769 snsssn 3805 ssuni 3875 unissb 3883 intss 3909 iunss 3971 dftr2 4149 axpweq 4220 axpow2 4225 ssextss 4269 ordunisuc2r 4567 setind 4592 zfregfr 4627 tfi 4635 ssrel 4768 ssrel2 4770 ssrelrel 4780 reliun 4801 relop 4833 issref 5071 funimass4 5639 isprm2 12489 bj-inf2vnlem3 16022 bj-inf2vnlem4 16023 |
| Copyright terms: Public domain | W3C validator |