ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssalel Unicode version

Theorem ssalel 3183
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ssalel  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ssalel
StepHypRef Expression
1 dfss 3182 . . 3  |-  ( A 
C_  B  <->  A  =  ( A  i^i  B ) )
2 df-in 3174 . . . 4  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
32eqeq2i 2217 . . 3  |-  ( A  =  ( A  i^i  B )  <->  A  =  {
x  |  ( x  e.  A  /\  x  e.  B ) } )
4 abeq2 2315 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  x  e.  B
) }  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  x  e.  B )
) )
51, 3, 43bitri 206 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  x  e.  B )
) )
6 pm4.71 389 . . 3  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  <->  ( x  e.  A  /\  x  e.  B ) ) )
76albii 1494 . 2  |-  ( A. x ( x  e.  A  ->  x  e.  B )  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  x  e.  B )
) )
85, 7bitr4i 187 1  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   {cab 2192    i^i cin 3167    C_ wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3174  df-ss 3181
This theorem is referenced by:  dfss3  3184  dfss2f  3186  ssel  3189  ssriv  3199  ssrdv  3201  sstr2  3202  eqss  3210  nssr  3255  rabss2  3278  ssconb  3308  ssequn1  3345  unss  3349  ssin  3397  ssddif  3409  reldisj  3514  ssdif0im  3527  inssdif0im  3530  ssundifim  3546  sbcssg  3571  pwss  3634  snssOLD  3762  snssb  3769  snsssn  3805  ssuni  3875  unissb  3883  intss  3909  iunss  3971  dftr2  4149  axpweq  4220  axpow2  4225  ssextss  4269  ordunisuc2r  4567  setind  4592  zfregfr  4627  tfi  4635  ssrel  4768  ssrel2  4770  ssrelrel  4780  reliun  4801  relop  4833  issref  5071  funimass4  5639  isprm2  12489  bj-inf2vnlem3  16022  bj-inf2vnlem4  16023
  Copyright terms: Public domain W3C validator