ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprsseq GIF version

Theorem ssprsseq 3829
Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprsseq ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))

Proof of Theorem ssprsseq
StepHypRef Expression
1 ssprss 3828 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
213adant3 1041 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
3 eqneqall 2410 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
4 eqtr3 2249 . . . . . . . 8 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
53, 4syl11 31 . . . . . . 7 (𝐴𝐵 → ((𝐴 = 𝐶𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}))
653ad2ant3 1044 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝐴 = 𝐶𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}))
76com12 30 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐶) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷}))
8 preq12 3745 . . . . . . 7 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶})
9 prcom 3742 . . . . . . 7 {𝐷, 𝐶} = {𝐶, 𝐷}
108, 9eqtrdi 2278 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
1110a1d 22 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷}))
12 preq12 3745 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
1312a1d 22 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷}))
14 eqtr3 2249 . . . . . . . 8 ((𝐴 = 𝐷𝐵 = 𝐷) → 𝐴 = 𝐵)
153, 14syl11 31 . . . . . . 7 (𝐴𝐵 → ((𝐴 = 𝐷𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}))
16153ad2ant3 1044 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝐴 = 𝐷𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}))
1716com12 30 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐷) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷}))
187, 11, 13, 17ccase 970 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} = {𝐶, 𝐷}))
1918com12 30 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
202, 19sylbid 150 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} → {𝐴, 𝐵} = {𝐶, 𝐷}))
21 eqimss 3278 . 2 ({𝐴, 𝐵} = {𝐶, 𝐷} → {𝐴, 𝐵} ⊆ {𝐶, 𝐷})
2220, 21impbid1 142 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wss 3197  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  upgredgpr  15941
  Copyright terms: Public domain W3C validator