ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex GIF version

Theorem topnex 14643
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4509. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4509 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 2474 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 vex 2776 . . . . . . . 8 𝑥 ∈ V
4 distop 14642 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
53, 4ax-mp 5 . . . . . . 7 𝒫 𝑥 ∈ Top
6 eleq1 2269 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
75, 6mpbiri 168 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87exlimiv 1622 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
98abssi 3272 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
10 ssexg 4194 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
119, 10mpan 424 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
122, 11mto 664 . 2 ¬ Top ∈ V
1312nelir 2475 1 Top ∉ V
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wnel 2472  Vcvv 2773  wss 3170  𝒫 cpw 3621  Topctop 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-nel 2473  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-uni 3860  df-iun 3938  df-top 14555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator