ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex GIF version

Theorem topnex 14322
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4484. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4484 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 2464 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 vex 2766 . . . . . . . 8 𝑥 ∈ V
4 distop 14321 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
53, 4ax-mp 5 . . . . . . 7 𝒫 𝑥 ∈ Top
6 eleq1 2259 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
75, 6mpbiri 168 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87exlimiv 1612 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
98abssi 3258 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
10 ssexg 4172 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
119, 10mpan 424 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
122, 11mto 663 . 2 ¬ Top ∈ V
1312nelir 2465 1 Top ∉ V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wnel 2462  Vcvv 2763  wss 3157  𝒫 cpw 3605  Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840  df-iun 3918  df-top 14234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator