Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topnex | GIF version |
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4434. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
topnex | ⊢ Top ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex 4434 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
2 | 1 | neli 2437 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
3 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | distop 12879 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
6 | eleq1 2233 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
7 | 5, 6 | mpbiri 167 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
8 | 7 | exlimiv 1591 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
9 | 8 | abssi 3222 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
10 | ssexg 4128 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
11 | 9, 10 | mpan 422 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
12 | 2, 11 | mto 657 | . 2 ⊢ ¬ Top ∈ V |
13 | 12 | nelir 2438 | 1 ⊢ Top ∉ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∉ wnel 2435 Vcvv 2730 ⊆ wss 3121 𝒫 cpw 3566 Topctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-nel 2436 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-uni 3797 df-iun 3875 df-top 12790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |