| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnex | GIF version | ||
| Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4539. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| topnex | ⊢ Top ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex 4539 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
| 2 | 1 | neli 2497 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
| 3 | vex 2802 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | distop 14753 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
| 6 | eleq1 2292 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 8 | 7 | exlimiv 1644 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 9 | 8 | abssi 3299 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
| 10 | ssexg 4222 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
| 11 | 9, 10 | mpan 424 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
| 12 | 2, 11 | mto 666 | . 2 ⊢ ¬ Top ∈ V |
| 13 | 12 | nelir 2498 | 1 ⊢ Top ∉ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∉ wnel 2495 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 Topctop 14665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3888 df-iun 3966 df-top 14666 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |