ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex GIF version

Theorem topnex 14754
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4539. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4539 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 2497 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 vex 2802 . . . . . . . 8 𝑥 ∈ V
4 distop 14753 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
53, 4ax-mp 5 . . . . . . 7 𝒫 𝑥 ∈ Top
6 eleq1 2292 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
75, 6mpbiri 168 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87exlimiv 1644 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
98abssi 3299 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
10 ssexg 4222 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
119, 10mpan 424 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
122, 11mto 666 . 2 ¬ Top ∈ V
1312nelir 2498 1 Top ∉ V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wnel 2495  Vcvv 2799  wss 3197  𝒫 cpw 3649  Topctop 14665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3888  df-iun 3966  df-top 14666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator