![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topnex | GIF version |
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4480. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
topnex | ⊢ Top ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnex 4480 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
2 | 1 | neli 2461 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
3 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | distop 14253 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
6 | eleq1 2256 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
7 | 5, 6 | mpbiri 168 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
8 | 7 | exlimiv 1609 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
9 | 8 | abssi 3254 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
10 | ssexg 4168 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
11 | 9, 10 | mpan 424 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
12 | 2, 11 | mto 663 | . 2 ⊢ ¬ Top ∈ V |
13 | 12 | nelir 2462 | 1 ⊢ Top ∉ V |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∉ wnel 2459 Vcvv 2760 ⊆ wss 3153 𝒫 cpw 3601 Topctop 14165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-nel 2460 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-uni 3836 df-iun 3914 df-top 14166 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |