| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnex | GIF version | ||
| Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4484. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| topnex | ⊢ Top ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex 4484 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V | |
| 2 | 1 | neli 2464 | . . 3 ⊢ ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V |
| 3 | vex 2766 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | distop 14321 | . . . . . . . 8 ⊢ (𝑥 ∈ V → 𝒫 𝑥 ∈ Top) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ Top |
| 6 | eleq1 2259 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top)) | |
| 7 | 5, 6 | mpbiri 168 | . . . . . 6 ⊢ (𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 8 | 7 | exlimiv 1612 | . . . . 5 ⊢ (∃𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top) |
| 9 | 8 | abssi 3258 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top |
| 10 | ssexg 4172 | . . . 4 ⊢ (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) | |
| 11 | 9, 10 | mpan 424 | . . 3 ⊢ (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V) |
| 12 | 2, 11 | mto 663 | . 2 ⊢ ¬ Top ∈ V |
| 13 | 12 | nelir 2465 | 1 ⊢ Top ∉ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∉ wnel 2462 Vcvv 2763 ⊆ wss 3157 𝒫 cpw 3605 Topctop 14233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-uni 3840 df-iun 3918 df-top 14234 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |