Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex GIF version

Theorem topnex 12264
 Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4370. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4370 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 2405 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 vex 2689 . . . . . . . 8 𝑥 ∈ V
4 distop 12263 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
53, 4ax-mp 5 . . . . . . 7 𝒫 𝑥 ∈ Top
6 eleq1 2202 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
75, 6mpbiri 167 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87exlimiv 1577 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
98abssi 3172 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
10 ssexg 4067 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
119, 10mpan 420 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
122, 11mto 651 . 2 ¬ Top ∈ V
1312nelir 2406 1 Top ∉ V
 Colors of variables: wff set class Syntax hints:   = wceq 1331  ∃wex 1468   ∈ wcel 1480  {cab 2125   ∉ wnel 2403  Vcvv 2686   ⊆ wss 3071  𝒫 cpw 3510  Topctop 12173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-un 4355 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-nel 2404  df-ral 2421  df-rex 2422  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-uni 3737  df-iun 3815  df-top 12174 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator