ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnex GIF version

Theorem topnex 14254
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4480. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
topnex Top ∉ V

Proof of Theorem topnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwnex 4480 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∉ V
21neli 2461 . . 3 ¬ {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V
3 vex 2763 . . . . . . . 8 𝑥 ∈ V
4 distop 14253 . . . . . . . 8 (𝑥 ∈ V → 𝒫 𝑥 ∈ Top)
53, 4ax-mp 5 . . . . . . 7 𝒫 𝑥 ∈ Top
6 eleq1 2256 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top))
75, 6mpbiri 168 . . . . . 6 (𝑦 = 𝒫 𝑥𝑦 ∈ Top)
87exlimiv 1609 . . . . 5 (∃𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top)
98abssi 3254 . . . 4 {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top
10 ssexg 4168 . . . 4 (({𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ⊆ Top ∧ Top ∈ V) → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
119, 10mpan 424 . . 3 (Top ∈ V → {𝑦 ∣ ∃𝑥 𝑦 = 𝒫 𝑥} ∈ V)
122, 11mto 663 . 2 ¬ Top ∈ V
1312nelir 2462 1 Top ∉ V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wnel 2459  Vcvv 2760  wss 3153  𝒫 cpw 3601  Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836  df-iun 3914  df-top 14166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator