ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp2 Unicode version

Theorem fvtp2 5509
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp2.1  |-  B  e. 
_V
fvtp2.4  |-  E  e. 
_V
Assertion
Ref Expression
fvtp2  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B
)  =  E )

Proof of Theorem fvtp2
StepHypRef Expression
1 tprot 3535 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. }
21fveq1i 5306 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 B )  =  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)
3 necom 2339 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvtp2.1 . . . . 5  |-  B  e. 
_V
5 fvtp2.4 . . . . 5  |-  E  e. 
_V
64, 5fvtp1 5508 . . . 4  |-  ( ( B  =/=  C  /\  B  =/=  A )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
76ancoms 264 . . 3  |-  ( ( B  =/=  A  /\  B  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
83, 7sylanb 278 . 2  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
92, 8syl5eq 2132 1  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B
)  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    =/= wne 2255   _Vcvv 2619   {ctp 3448   <.cop 3449   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-tp 3454  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-res 4450  df-iota 4980  df-fun 5017  df-fv 5023
This theorem is referenced by:  fvtp3  5510
  Copyright terms: Public domain W3C validator