ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp3 Unicode version

Theorem fvtp3 5502
Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp3.1  |-  C  e. 
_V
fvtp3.4  |-  F  e. 
_V
Assertion
Ref Expression
fvtp3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )

Proof of Theorem fvtp3
StepHypRef Expression
1 tprot 3533 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. }
21fveq1i 5300 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 C )  =  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)
3 necom 2339 . . . 4  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvtp3.1 . . . . 5  |-  C  e. 
_V
5 fvtp3.4 . . . . 5  |-  F  e. 
_V
64, 5fvtp2 5501 . . . 4  |-  ( ( B  =/=  C  /\  C  =/=  A )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
73, 6sylan2b 281 . . 3  |-  ( ( B  =/=  C  /\  A  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
87ancoms 264 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
92, 8syl5eq 2132 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438    =/= wne 2255   _Vcvv 2619   {ctp 3446   <.cop 3447   ` cfv 5010
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-tp 3452  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-res 4448  df-iota 4975  df-fun 5012  df-fv 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator