ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp3g Unicode version

Theorem fvtp3g 5849
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp3g  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )

Proof of Theorem fvtp3g
StepHypRef Expression
1 tprot 3759 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. }
21fveq1i 5628 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 C )  =  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)
3 necom 2484 . . . . 5  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvtp2g 5848 . . . . . 6  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( B  =/=  C  /\  C  =/= 
A ) )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
54expcom 116 . . . . 5  |-  ( ( B  =/=  C  /\  C  =/=  A )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
63, 5sylan2b 287 . . . 4  |-  ( ( B  =/=  C  /\  A  =/=  C )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
76ancoms 268 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
87impcom 125 . 2  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
92, 8eqtrid 2274 1  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   {ctp 3668   <.cop 3669   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  imasmulr  13342
  Copyright terms: Public domain W3C validator