ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp3g Unicode version

Theorem fvtp3g 5718
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp3g  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )

Proof of Theorem fvtp3g
StepHypRef Expression
1 tprot 3682 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. }
21fveq1i 5508 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 C )  =  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)
3 necom 2429 . . . . 5  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvtp2g 5717 . . . . . 6  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( B  =/=  C  /\  C  =/= 
A ) )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
54expcom 116 . . . . 5  |-  ( ( B  =/=  C  /\  C  =/=  A )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
63, 5sylan2b 287 . . . 4  |-  ( ( B  =/=  C  /\  A  =/=  C )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
76ancoms 268 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( C  e.  V  /\  F  e.  W )  ->  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C )  =  F ) )
87impcom 125 . 2  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  C
)  =  F )
92, 8eqtrid 2220 1  |-  ( ( ( C  e.  V  /\  F  e.  W
)  /\  ( A  =/=  C  /\  B  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146    =/= wne 2345   {ctp 3591   <.cop 3592   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-tp 3597  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-res 4632  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator