ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trinxp Unicode version

Theorem trinxp 5059
Description: The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square cross product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trinxp  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem trinxp
StepHypRef Expression
1 xpidtr 5056 . 2  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
2 trin2 5057 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( ( A  X.  A )  o.  ( A  X.  A ) ) 
C_  ( A  X.  A ) )  -> 
( ( R  i^i  ( A  X.  A
) )  o.  ( R  i^i  ( A  X.  A ) ) ) 
C_  ( R  i^i  ( A  X.  A
) ) )
31, 2mpan2 425 1  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3152    C_ wss 3153    X. cxp 4657    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-co 4668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator