ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpidtr Unicode version

Theorem xpidtr 5056
Description: A square cross product  ( A  X.  A ) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)

Proof of Theorem xpidtr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4690 . . . . . 6  |-  ( x ( A  X.  A
) y  <->  ( x  e.  A  /\  y  e.  A ) )
2 brxp 4690 . . . . . . . . 9  |-  ( y ( A  X.  A
) z  <->  ( y  e.  A  /\  z  e.  A ) )
3 brxp 4690 . . . . . . . . . . 11  |-  ( x ( A  X.  A
) z  <->  ( x  e.  A  /\  z  e.  A ) )
43simplbi2com 1455 . . . . . . . . . 10  |-  ( z  e.  A  ->  (
x  e.  A  ->  x ( A  X.  A ) z ) )
54adantl 277 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( x  e.  A  ->  x ( A  X.  A ) z ) )
62, 5sylbi 121 . . . . . . . 8  |-  ( y ( A  X.  A
) z  ->  (
x  e.  A  ->  x ( A  X.  A ) z ) )
76com12 30 . . . . . . 7  |-  ( x  e.  A  ->  (
y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
87adantr 276 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
91, 8sylbi 121 . . . . 5  |-  ( x ( A  X.  A
) y  ->  (
y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
109imp 124 . . . 4  |-  ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z )
1110ax-gen 1460 . . 3  |-  A. z
( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x
( A  X.  A
) z )
1211gen2 1461 . 2  |-  A. x A. y A. z ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z )
13 cotr 5047 . 2  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  <->  A. x A. y A. z ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z ) )
1412, 13mpbir 146 1  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    e. wcel 2164    C_ wss 3153   class class class wbr 4029    X. cxp 4657    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-co 4668
This theorem is referenced by:  trinxp  5059  xpider  6660
  Copyright terms: Public domain W3C validator