ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpidtr Unicode version

Theorem xpidtr 5119
Description: A square cross product  ( A  X.  A ) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)

Proof of Theorem xpidtr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4750 . . . . . 6  |-  ( x ( A  X.  A
) y  <->  ( x  e.  A  /\  y  e.  A ) )
2 brxp 4750 . . . . . . . . 9  |-  ( y ( A  X.  A
) z  <->  ( y  e.  A  /\  z  e.  A ) )
3 brxp 4750 . . . . . . . . . . 11  |-  ( x ( A  X.  A
) z  <->  ( x  e.  A  /\  z  e.  A ) )
43simplbi2com 1487 . . . . . . . . . 10  |-  ( z  e.  A  ->  (
x  e.  A  ->  x ( A  X.  A ) z ) )
54adantl 277 . . . . . . . . 9  |-  ( ( y  e.  A  /\  z  e.  A )  ->  ( x  e.  A  ->  x ( A  X.  A ) z ) )
62, 5sylbi 121 . . . . . . . 8  |-  ( y ( A  X.  A
) z  ->  (
x  e.  A  ->  x ( A  X.  A ) z ) )
76com12 30 . . . . . . 7  |-  ( x  e.  A  ->  (
y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
87adantr 276 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
91, 8sylbi 121 . . . . 5  |-  ( x ( A  X.  A
) y  ->  (
y ( A  X.  A ) z  ->  x ( A  X.  A ) z ) )
109imp 124 . . . 4  |-  ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z )
1110ax-gen 1495 . . 3  |-  A. z
( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x
( A  X.  A
) z )
1211gen2 1496 . 2  |-  A. x A. y A. z ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z )
13 cotr 5110 . 2  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  <->  A. x A. y A. z ( ( x ( A  X.  A ) y  /\  y ( A  X.  A ) z )  ->  x ( A  X.  A ) z ) )
1412, 13mpbir 146 1  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    e. wcel 2200    C_ wss 3197   class class class wbr 4083    X. cxp 4717    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-co 4728
This theorem is referenced by:  trinxp  5122  xpider  6753
  Copyright terms: Public domain W3C validator