| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12 | Unicode version | ||
| Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3328 |
. 2
| |
| 2 | uneq2 3329 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: uneq12i 3333 uneq12d 3336 un00 3515 opthprc 4744 dmpropg 5174 unixpm 5237 fntpg 5349 fnun 5401 resasplitss 5477 pm54.43 7324 |
| Copyright terms: Public domain | W3C validator |