ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12 Unicode version

Theorem uneq12 3353
Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
uneq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C
)  =  ( B  u.  D ) )

Proof of Theorem uneq12
StepHypRef Expression
1 uneq1 3351 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
2 uneq2 3352 . 2  |-  ( C  =  D  ->  ( B  u.  C )  =  ( B  u.  D ) )
31, 2sylan9eq 2282 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C
)  =  ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201
This theorem is referenced by:  uneq12i  3356  uneq12d  3359  un00  3538  opthprc  4770  dmpropg  5201  unixpm  5264  fntpg  5377  fnun  5429  resasplitss  5505  pm54.43  7363
  Copyright terms: Public domain W3C validator