Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12 | Unicode version |
Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3269 | . 2 | |
2 | uneq2 3270 | . 2 | |
3 | 1, 2 | sylan9eq 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: uneq12i 3274 uneq12d 3277 un00 3455 opthprc 4655 dmpropg 5076 unixpm 5139 fntpg 5244 fnun 5294 resasplitss 5367 pm54.43 7146 |
Copyright terms: Public domain | W3C validator |