Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12 | Unicode version |
Description: Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3265 | . 2 | |
2 | uneq2 3266 | . 2 | |
3 | 1, 2 | sylan9eq 2217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 cun 3110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2724 df-un 3116 |
This theorem is referenced by: uneq12i 3270 uneq12d 3273 un00 3451 opthprc 4650 dmpropg 5071 unixpm 5134 fntpg 5239 fnun 5289 resasplitss 5362 pm54.43 7138 |
Copyright terms: Public domain | W3C validator |