ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniprg GIF version

Theorem uniprg 3825
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.)
Assertion
Ref Expression
uniprg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3670 . . . 4 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21unieqd 3821 . . 3 (𝑥 = 𝐴 {𝑥, 𝑦} = {𝐴, 𝑦})
3 uneq1 3283 . . 3 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
42, 3eqeq12d 2192 . 2 (𝑥 = 𝐴 → ( {𝑥, 𝑦} = (𝑥𝑦) ↔ {𝐴, 𝑦} = (𝐴𝑦)))
5 preq2 3671 . . . 4 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
65unieqd 3821 . . 3 (𝑦 = 𝐵 {𝐴, 𝑦} = {𝐴, 𝐵})
7 uneq2 3284 . . 3 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
86, 7eqeq12d 2192 . 2 (𝑦 = 𝐵 → ( {𝐴, 𝑦} = (𝐴𝑦) ↔ {𝐴, 𝐵} = (𝐴𝐵)))
9 vex 2741 . . 3 𝑥 ∈ V
10 vex 2741 . . 3 𝑦 ∈ V
119, 10unipr 3824 . 2 {𝑥, 𝑦} = (𝑥𝑦)
124, 8, 11vtocl2g 2802 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cun 3128  {cpr 3594   cuni 3810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-uni 3811
This theorem is referenced by:  onun2  4490  unopn  13508
  Copyright terms: Public domain W3C validator