Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniprg | GIF version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
Ref | Expression |
---|---|
uniprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3653 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
2 | 1 | unieqd 3800 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥, 𝑦} = ∪ {𝐴, 𝑦}) |
3 | uneq1 3269 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
4 | 2, 3 | eqeq12d 2180 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) ↔ ∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦))) |
5 | preq2 3654 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
6 | 5 | unieqd 3800 | . . 3 ⊢ (𝑦 = 𝐵 → ∪ {𝐴, 𝑦} = ∪ {𝐴, 𝐵}) |
7 | uneq2 3270 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
8 | 6, 7 | eqeq12d 2180 | . 2 ⊢ (𝑦 = 𝐵 → (∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦) ↔ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵))) |
9 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
10 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | unipr 3803 | . 2 ⊢ ∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) |
12 | 4, 8, 11 | vtocl2g 2790 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 {cpr 3577 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: onun2 4467 unopn 12643 |
Copyright terms: Public domain | W3C validator |