![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniprg | GIF version |
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
Ref | Expression |
---|---|
uniprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3670 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦}) | |
2 | 1 | unieqd 3821 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥, 𝑦} = ∪ {𝐴, 𝑦}) |
3 | uneq1 3283 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
4 | 2, 3 | eqeq12d 2192 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) ↔ ∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦))) |
5 | preq2 3671 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) | |
6 | 5 | unieqd 3821 | . . 3 ⊢ (𝑦 = 𝐵 → ∪ {𝐴, 𝑦} = ∪ {𝐴, 𝐵}) |
7 | uneq2 3284 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
8 | 6, 7 | eqeq12d 2192 | . 2 ⊢ (𝑦 = 𝐵 → (∪ {𝐴, 𝑦} = (𝐴 ∪ 𝑦) ↔ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵))) |
9 | vex 2741 | . . 3 ⊢ 𝑥 ∈ V | |
10 | vex 2741 | . . 3 ⊢ 𝑦 ∈ V | |
11 | 9, 10 | unipr 3824 | . 2 ⊢ ∪ {𝑥, 𝑦} = (𝑥 ∪ 𝑦) |
12 | 4, 8, 11 | vtocl2g 2802 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∪ cun 3128 {cpr 3594 ∪ cuni 3810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-uni 3811 |
This theorem is referenced by: onun2 4490 unopn 13508 |
Copyright terms: Public domain | W3C validator |