ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptss2 Unicode version

Theorem fvmptss2 5639
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fvmptss2.1  |-  ( x  =  D  ->  B  =  C )
fvmptss2.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss2  |-  ( F `
 D )  C_  C
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmptss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvss 5575 . 2  |-  ( A. y ( D F y  ->  y  C_  C )  ->  ( F `  D )  C_  C )
2 fvmptss2.2 . . . . . 6  |-  F  =  ( x  e.  A  |->  B )
32funmpt2 5298 . . . . 5  |-  Fun  F
4 funrel 5276 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . . 4  |-  Rel  F
65brrelex1i 4707 . . 3  |-  ( D F y  ->  D  e.  _V )
7 nfcv 2339 . . . 4  |-  F/_ x D
8 nfmpt1 4127 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
92, 8nfcxfr 2336 . . . . . 6  |-  F/_ x F
10 nfcv 2339 . . . . . 6  |-  F/_ x
y
117, 9, 10nfbr 4080 . . . . 5  |-  F/ x  D F y
12 nfv 1542 . . . . 5  |-  F/ x  y  C_  C
1311, 12nfim 1586 . . . 4  |-  F/ x
( D F y  ->  y  C_  C
)
14 breq1 4037 . . . . 5  |-  ( x  =  D  ->  (
x F y  <->  D F
y ) )
15 fvmptss2.1 . . . . . 6  |-  ( x  =  D  ->  B  =  C )
1615sseq2d 3214 . . . . 5  |-  ( x  =  D  ->  (
y  C_  B  <->  y  C_  C ) )
1714, 16imbi12d 234 . . . 4  |-  ( x  =  D  ->  (
( x F y  ->  y  C_  B
)  <->  ( D F y  ->  y  C_  C ) ) )
18 df-br 4035 . . . . 5  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
19 opabid 4291 . . . . . . 7  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  <->  ( x  e.  A  /\  y  =  B ) )
20 eqimss 3238 . . . . . . . 8  |-  ( y  =  B  ->  y  C_  B )
2120adantl 277 . . . . . . 7  |-  ( ( x  e.  A  /\  y  =  B )  ->  y  C_  B )
2219, 21sylbi 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  ->  y 
C_  B )
23 df-mpt 4097 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
242, 23eqtri 2217 . . . . . 6  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
2522, 24eleq2s 2291 . . . . 5  |-  ( <.
x ,  y >.  e.  F  ->  y  C_  B )
2618, 25sylbi 121 . . . 4  |-  ( x F y  ->  y  C_  B )
277, 13, 17, 26vtoclgf 2822 . . 3  |-  ( D  e.  _V  ->  ( D F y  ->  y  C_  C ) )
286, 27mpcom 36 . 2  |-  ( D F y  ->  y  C_  C )
291, 28mpg 1465 1  |-  ( F `
 D )  C_  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   <.cop 3626   class class class wbr 4034   {copab 4094    |-> cmpt 4095   Rel wrel 4669   Fun wfun 5253   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-iota 5220  df-fun 5261  df-fv 5267
This theorem is referenced by:  mptfvex  5650
  Copyright terms: Public domain W3C validator