ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptss2 Unicode version

Theorem fvmptss2 5654
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fvmptss2.1  |-  ( x  =  D  ->  B  =  C )
fvmptss2.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss2  |-  ( F `
 D )  C_  C
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmptss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvss 5590 . 2  |-  ( A. y ( D F y  ->  y  C_  C )  ->  ( F `  D )  C_  C )
2 fvmptss2.2 . . . . . 6  |-  F  =  ( x  e.  A  |->  B )
32funmpt2 5310 . . . . 5  |-  Fun  F
4 funrel 5288 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . . 4  |-  Rel  F
65brrelex1i 4718 . . 3  |-  ( D F y  ->  D  e.  _V )
7 nfcv 2348 . . . 4  |-  F/_ x D
8 nfmpt1 4137 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
92, 8nfcxfr 2345 . . . . . 6  |-  F/_ x F
10 nfcv 2348 . . . . . 6  |-  F/_ x
y
117, 9, 10nfbr 4090 . . . . 5  |-  F/ x  D F y
12 nfv 1551 . . . . 5  |-  F/ x  y  C_  C
1311, 12nfim 1595 . . . 4  |-  F/ x
( D F y  ->  y  C_  C
)
14 breq1 4047 . . . . 5  |-  ( x  =  D  ->  (
x F y  <->  D F
y ) )
15 fvmptss2.1 . . . . . 6  |-  ( x  =  D  ->  B  =  C )
1615sseq2d 3223 . . . . 5  |-  ( x  =  D  ->  (
y  C_  B  <->  y  C_  C ) )
1714, 16imbi12d 234 . . . 4  |-  ( x  =  D  ->  (
( x F y  ->  y  C_  B
)  <->  ( D F y  ->  y  C_  C ) ) )
18 df-br 4045 . . . . 5  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
19 opabid 4302 . . . . . . 7  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  <->  ( x  e.  A  /\  y  =  B ) )
20 eqimss 3247 . . . . . . . 8  |-  ( y  =  B  ->  y  C_  B )
2120adantl 277 . . . . . . 7  |-  ( ( x  e.  A  /\  y  =  B )  ->  y  C_  B )
2219, 21sylbi 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  ->  y 
C_  B )
23 df-mpt 4107 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
242, 23eqtri 2226 . . . . . 6  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
2522, 24eleq2s 2300 . . . . 5  |-  ( <.
x ,  y >.  e.  F  ->  y  C_  B )
2618, 25sylbi 121 . . . 4  |-  ( x F y  ->  y  C_  B )
277, 13, 17, 26vtoclgf 2831 . . 3  |-  ( D  e.  _V  ->  ( D F y  ->  y  C_  C ) )
286, 27mpcom 36 . 2  |-  ( D F y  ->  y  C_  C )
291, 28mpg 1474 1  |-  ( F `
 D )  C_  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   <.cop 3636   class class class wbr 4044   {copab 4104    |-> cmpt 4105   Rel wrel 4680   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  mptfvex  5665
  Copyright terms: Public domain W3C validator