ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptss2 Unicode version

Theorem fvmptss2 5653
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
fvmptss2.1  |-  ( x  =  D  ->  B  =  C )
fvmptss2.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptss2  |-  ( F `
 D )  C_  C
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmptss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvss 5589 . 2  |-  ( A. y ( D F y  ->  y  C_  C )  ->  ( F `  D )  C_  C )
2 fvmptss2.2 . . . . . 6  |-  F  =  ( x  e.  A  |->  B )
32funmpt2 5309 . . . . 5  |-  Fun  F
4 funrel 5287 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . . 4  |-  Rel  F
65brrelex1i 4717 . . 3  |-  ( D F y  ->  D  e.  _V )
7 nfcv 2347 . . . 4  |-  F/_ x D
8 nfmpt1 4136 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
92, 8nfcxfr 2344 . . . . . 6  |-  F/_ x F
10 nfcv 2347 . . . . . 6  |-  F/_ x
y
117, 9, 10nfbr 4089 . . . . 5  |-  F/ x  D F y
12 nfv 1550 . . . . 5  |-  F/ x  y  C_  C
1311, 12nfim 1594 . . . 4  |-  F/ x
( D F y  ->  y  C_  C
)
14 breq1 4046 . . . . 5  |-  ( x  =  D  ->  (
x F y  <->  D F
y ) )
15 fvmptss2.1 . . . . . 6  |-  ( x  =  D  ->  B  =  C )
1615sseq2d 3222 . . . . 5  |-  ( x  =  D  ->  (
y  C_  B  <->  y  C_  C ) )
1714, 16imbi12d 234 . . . 4  |-  ( x  =  D  ->  (
( x F y  ->  y  C_  B
)  <->  ( D F y  ->  y  C_  C ) ) )
18 df-br 4044 . . . . 5  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
19 opabid 4301 . . . . . . 7  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  <->  ( x  e.  A  /\  y  =  B ) )
20 eqimss 3246 . . . . . . . 8  |-  ( y  =  B  ->  y  C_  B )
2120adantl 277 . . . . . . 7  |-  ( ( x  e.  A  /\  y  =  B )  ->  y  C_  B )
2219, 21sylbi 121 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  ->  y 
C_  B )
23 df-mpt 4106 . . . . . . 7  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
242, 23eqtri 2225 . . . . . 6  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
2522, 24eleq2s 2299 . . . . 5  |-  ( <.
x ,  y >.  e.  F  ->  y  C_  B )
2618, 25sylbi 121 . . . 4  |-  ( x F y  ->  y  C_  B )
277, 13, 17, 26vtoclgf 2830 . . 3  |-  ( D  e.  _V  ->  ( D F y  ->  y  C_  C ) )
286, 27mpcom 36 . 2  |-  ( D F y  ->  y  C_  C )
291, 28mpg 1473 1  |-  ( F `
 D )  C_  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   <.cop 3635   class class class wbr 4043   {copab 4103    |-> cmpt 4104   Rel wrel 4679   Fun wfun 5264   ` cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-iota 5231  df-fun 5272  df-fv 5278
This theorem is referenced by:  mptfvex  5664
  Copyright terms: Public domain W3C validator