Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptss2 | Unicode version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | |
fvmptss2.2 |
Ref | Expression |
---|---|
fvmptss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5510 | . 2 | |
2 | fvmptss2.2 | . . . . . 6 | |
3 | 2 | funmpt2 5237 | . . . . 5 |
4 | funrel 5215 | . . . . 5 | |
5 | 3, 4 | ax-mp 5 | . . . 4 |
6 | 5 | brrelex1i 4654 | . . 3 |
7 | nfcv 2312 | . . . 4 | |
8 | nfmpt1 4082 | . . . . . . 7 | |
9 | 2, 8 | nfcxfr 2309 | . . . . . 6 |
10 | nfcv 2312 | . . . . . 6 | |
11 | 7, 9, 10 | nfbr 4035 | . . . . 5 |
12 | nfv 1521 | . . . . 5 | |
13 | 11, 12 | nfim 1565 | . . . 4 |
14 | breq1 3992 | . . . . 5 | |
15 | fvmptss2.1 | . . . . . 6 | |
16 | 15 | sseq2d 3177 | . . . . 5 |
17 | 14, 16 | imbi12d 233 | . . . 4 |
18 | df-br 3990 | . . . . 5 | |
19 | opabid 4242 | . . . . . . 7 | |
20 | eqimss 3201 | . . . . . . . 8 | |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | 19, 21 | sylbi 120 | . . . . . 6 |
23 | df-mpt 4052 | . . . . . . 7 | |
24 | 2, 23 | eqtri 2191 | . . . . . 6 |
25 | 22, 24 | eleq2s 2265 | . . . . 5 |
26 | 18, 25 | sylbi 120 | . . . 4 |
27 | 7, 13, 17, 26 | vtoclgf 2788 | . . 3 |
28 | 6, 27 | mpcom 36 | . 2 |
29 | 1, 28 | mpg 1444 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 wss 3121 cop 3586 class class class wbr 3989 copab 4049 cmpt 4050 wrel 4616 wfun 5192 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: mptfvex 5581 |
Copyright terms: Public domain | W3C validator |