Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptss2 | Unicode version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmptss2.1 | |
fvmptss2.2 |
Ref | Expression |
---|---|
fvmptss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvss 5481 | . 2 | |
2 | fvmptss2.2 | . . . . . 6 | |
3 | 2 | funmpt2 5208 | . . . . 5 |
4 | funrel 5186 | . . . . 5 | |
5 | 3, 4 | ax-mp 5 | . . . 4 |
6 | 5 | brrelex1i 4628 | . . 3 |
7 | nfcv 2299 | . . . 4 | |
8 | nfmpt1 4057 | . . . . . . 7 | |
9 | 2, 8 | nfcxfr 2296 | . . . . . 6 |
10 | nfcv 2299 | . . . . . 6 | |
11 | 7, 9, 10 | nfbr 4010 | . . . . 5 |
12 | nfv 1508 | . . . . 5 | |
13 | 11, 12 | nfim 1552 | . . . 4 |
14 | breq1 3968 | . . . . 5 | |
15 | fvmptss2.1 | . . . . . 6 | |
16 | 15 | sseq2d 3158 | . . . . 5 |
17 | 14, 16 | imbi12d 233 | . . . 4 |
18 | df-br 3966 | . . . . 5 | |
19 | opabid 4217 | . . . . . . 7 | |
20 | eqimss 3182 | . . . . . . . 8 | |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | 19, 21 | sylbi 120 | . . . . . 6 |
23 | df-mpt 4027 | . . . . . . 7 | |
24 | 2, 23 | eqtri 2178 | . . . . . 6 |
25 | 22, 24 | eleq2s 2252 | . . . . 5 |
26 | 18, 25 | sylbi 120 | . . . 4 |
27 | 7, 13, 17, 26 | vtoclgf 2770 | . . 3 |
28 | 6, 27 | mpcom 36 | . 2 |
29 | 1, 28 | mpg 1431 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cvv 2712 wss 3102 cop 3563 class class class wbr 3965 copab 4024 cmpt 4025 wrel 4590 wfun 5163 cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-iota 5134 df-fun 5171 df-fv 5177 |
This theorem is referenced by: mptfvex 5552 |
Copyright terms: Public domain | W3C validator |