ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlesubadd Unicode version

Theorem xlesubadd 10007
Description: Under certain conditions, the conclusion of lesubadd 8509 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) )

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1003 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  e.  RR* )
2 simpl2 1004 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  B  e.  RR* )
32xnegcld 9979 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  -e B  e.  RR* )
4 xaddcl 9984 . . . . . 6  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  ( A +e  -e B )  e. 
RR* )
51, 3, 4syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A +e  -e B )  e. 
RR* )
65adantr 276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( A +e  -e
B )  e.  RR* )
7 simpll3 1041 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  C  e. 
RR* )
8 simpr 110 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  B  e.  RR )
9 xleadd1 9999 . . . 4  |-  ( ( ( A +e  -e B )  e. 
RR*  /\  C  e.  RR* 
/\  B  e.  RR )  ->  ( ( A +e  -e
B )  <_  C  <->  ( ( A +e  -e B ) +e B )  <_ 
( C +e
B ) ) )
106, 7, 8, 9syl3anc 1250 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B )  <_  C 
<->  ( ( A +e  -e B ) +e B )  <_  ( C +e B ) ) )
11 xnpcan 9996 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )
121, 11sylan 283 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B ) +e B )  =  A )
1312breq1d 4055 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( ( A +e  -e B ) +e B )  <_ 
( C +e
B )  <->  A  <_  ( C +e B ) ) )
1410, 13bitrd 188 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B )  <_  C 
<->  A  <_  ( C +e B ) ) )
15 simpr3 1008 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
0  <_  C )
16 oveq1 5953 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e -oo )  =  ( +oo +e -oo ) )
17 pnfaddmnf 9974 . . . . . . . . 9  |-  ( +oo +e -oo )  =  0
1816, 17eqtrdi 2254 . . . . . . . 8  |-  ( A  = +oo  ->  ( A +e -oo )  =  0 )
1918breq1d 4055 . . . . . . 7  |-  ( A  = +oo  ->  (
( A +e -oo )  <_  C  <->  0  <_  C ) )
2015, 19syl5ibrcom 157 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  = +oo  ->  ( A +e -oo )  <_  C ) )
21 xaddmnf1 9972 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2221ex 115 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  =/= +oo  ->  ( A +e -oo )  = -oo ) )
231, 22syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  =/= +oo  ->  ( A +e -oo )  = -oo ) )
24 simpl3 1005 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  C  e.  RR* )
25 mnfle 9916 . . . . . . . . 9  |-  ( C  e.  RR*  -> -oo  <_  C )
2624, 25syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> -oo  <_  C )
27 breq1 4048 . . . . . . . 8  |-  ( ( A +e -oo )  = -oo  ->  (
( A +e -oo )  <_  C  <-> -oo  <_  C
) )
2826, 27syl5ibrcom 157 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e -oo )  = -oo  ->  ( A +e -oo )  <_  C ) )
2923, 28syld 45 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  =/= +oo  ->  ( A +e -oo )  <_  C ) )
30 xrpnfdc 9966 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = +oo )
31 dcne 2387 . . . . . . . 8  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  A  =/= +oo ) )
3230, 31sylib 122 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  A  =/= +oo ) )
331, 32syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  = +oo  \/  A  =/= +oo )
)
3420, 29, 33mpjaod 720 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A +e -oo )  <_  C )
35 pnfge 9913 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
361, 35syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  <_ +oo )
37 ge0nemnf 9948 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  0  <_  C )  ->  C  =/= -oo )
3824, 15, 37syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  C  =/= -oo )
39 xaddpnf1 9970 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( C +e +oo )  = +oo )
4024, 38, 39syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( C +e +oo )  = +oo )
4136, 40breqtrrd 4073 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  <_  ( C +e +oo ) )
4234, 412thd 175 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e -oo )  <_  C  <->  A  <_  ( C +e +oo ) ) )
43 xnegeq 9951 . . . . . . . 8  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
44 xnegpnf 9952 . . . . . . . 8  |-  -e +oo  = -oo
4543, 44eqtrdi 2254 . . . . . . 7  |-  ( B  = +oo  ->  -e
B  = -oo )
4645oveq2d 5962 . . . . . 6  |-  ( B  = +oo  ->  ( A +e  -e
B )  =  ( A +e -oo ) )
4746breq1d 4055 . . . . 5  |-  ( B  = +oo  ->  (
( A +e  -e B )  <_  C 
<->  ( A +e -oo )  <_  C ) )
48 oveq2 5954 . . . . . 6  |-  ( B  = +oo  ->  ( C +e B )  =  ( C +e +oo ) )
4948breq2d 4057 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  ( C +e B )  <->  A  <_  ( C +e +oo ) ) )
5047, 49bibi12d 235 . . . 4  |-  ( B  = +oo  ->  (
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) )  <->  ( ( A +e -oo )  <_  C  <->  A  <_  ( C +e +oo )
) ) )
5142, 50syl5ibrcom 157 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  = +oo  ->  ( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) ) )
5251imp 124 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  = +oo )  ->  ( ( A +e  -e B )  <_  C 
<->  A  <_  ( C +e B ) ) )
53 simpr2 1007 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  B  =/= -oo )
542, 53jca 306 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  e.  RR*  /\  B  =/= -oo )
)
55 xrnemnf 9901 . . 3  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
5654, 55sylib 122 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  e.  RR  \/  B  = +oo ) )
5714, 52, 56mpjaodan 800 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4045  (class class class)co 5946   RRcr 7926   0cc0 7927   +oocpnf 8106   -oocmnf 8107   RR*cxr 8108    <_ cle 8110    -ecxne 9893   +ecxad 9894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-xneg 9896  df-xadd 9897
This theorem is referenced by:  xmetrtri  14881
  Copyright terms: Public domain W3C validator