ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlesubadd Unicode version

Theorem xlesubadd 9819
Description: Under certain conditions, the conclusion of lesubadd 8332 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) )

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 990 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  e.  RR* )
2 simpl2 991 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  B  e.  RR* )
32xnegcld 9791 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  -e B  e.  RR* )
4 xaddcl 9796 . . . . . 6  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  ( A +e  -e B )  e. 
RR* )
51, 3, 4syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A +e  -e B )  e. 
RR* )
65adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( A +e  -e
B )  e.  RR* )
7 simpll3 1028 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  C  e. 
RR* )
8 simpr 109 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  B  e.  RR )
9 xleadd1 9811 . . . 4  |-  ( ( ( A +e  -e B )  e. 
RR*  /\  C  e.  RR* 
/\  B  e.  RR )  ->  ( ( A +e  -e
B )  <_  C  <->  ( ( A +e  -e B ) +e B )  <_ 
( C +e
B ) ) )
106, 7, 8, 9syl3anc 1228 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B )  <_  C 
<->  ( ( A +e  -e B ) +e B )  <_  ( C +e B ) ) )
11 xnpcan 9808 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )
121, 11sylan 281 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B ) +e B )  =  A )
1312breq1d 3992 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( ( A +e  -e B ) +e B )  <_ 
( C +e
B )  <->  A  <_  ( C +e B ) ) )
1410, 13bitrd 187 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  e.  RR )  ->  ( ( A +e  -e B )  <_  C 
<->  A  <_  ( C +e B ) ) )
15 simpr3 995 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
0  <_  C )
16 oveq1 5849 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A +e -oo )  =  ( +oo +e -oo ) )
17 pnfaddmnf 9786 . . . . . . . . 9  |-  ( +oo +e -oo )  =  0
1816, 17eqtrdi 2215 . . . . . . . 8  |-  ( A  = +oo  ->  ( A +e -oo )  =  0 )
1918breq1d 3992 . . . . . . 7  |-  ( A  = +oo  ->  (
( A +e -oo )  <_  C  <->  0  <_  C ) )
2015, 19syl5ibrcom 156 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  = +oo  ->  ( A +e -oo )  <_  C ) )
21 xaddmnf1 9784 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
2221ex 114 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( A  =/= +oo  ->  ( A +e -oo )  = -oo ) )
231, 22syl 14 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  =/= +oo  ->  ( A +e -oo )  = -oo ) )
24 simpl3 992 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  C  e.  RR* )
25 mnfle 9728 . . . . . . . . 9  |-  ( C  e.  RR*  -> -oo  <_  C )
2624, 25syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> -oo  <_  C )
27 breq1 3985 . . . . . . . 8  |-  ( ( A +e -oo )  = -oo  ->  (
( A +e -oo )  <_  C  <-> -oo  <_  C
) )
2826, 27syl5ibrcom 156 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e -oo )  = -oo  ->  ( A +e -oo )  <_  C ) )
2923, 28syld 45 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  =/= +oo  ->  ( A +e -oo )  <_  C ) )
30 xrpnfdc 9778 . . . . . . . 8  |-  ( A  e.  RR*  -> DECID  A  = +oo )
31 dcne 2347 . . . . . . . 8  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  A  =/= +oo ) )
3230, 31sylib 121 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  = +oo  \/  A  =/= +oo ) )
331, 32syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A  = +oo  \/  A  =/= +oo )
)
3420, 29, 33mpjaod 708 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( A +e -oo )  <_  C )
35 pnfge 9725 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_ +oo )
361, 35syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  <_ +oo )
37 ge0nemnf 9760 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  0  <_  C )  ->  C  =/= -oo )
3824, 15, 37syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  C  =/= -oo )
39 xaddpnf1 9782 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( C +e +oo )  = +oo )
4024, 38, 39syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( C +e +oo )  = +oo )
4136, 40breqtrrd 4010 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  A  <_  ( C +e +oo ) )
4234, 412thd 174 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e -oo )  <_  C  <->  A  <_  ( C +e +oo ) ) )
43 xnegeq 9763 . . . . . . . 8  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
44 xnegpnf 9764 . . . . . . . 8  |-  -e +oo  = -oo
4543, 44eqtrdi 2215 . . . . . . 7  |-  ( B  = +oo  ->  -e
B  = -oo )
4645oveq2d 5858 . . . . . 6  |-  ( B  = +oo  ->  ( A +e  -e
B )  =  ( A +e -oo ) )
4746breq1d 3992 . . . . 5  |-  ( B  = +oo  ->  (
( A +e  -e B )  <_  C 
<->  ( A +e -oo )  <_  C ) )
48 oveq2 5850 . . . . . 6  |-  ( B  = +oo  ->  ( C +e B )  =  ( C +e +oo ) )
4948breq2d 3994 . . . . 5  |-  ( B  = +oo  ->  ( A  <_  ( C +e B )  <->  A  <_  ( C +e +oo ) ) )
5047, 49bibi12d 234 . . . 4  |-  ( B  = +oo  ->  (
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) )  <->  ( ( A +e -oo )  <_  C  <->  A  <_  ( C +e +oo )
) ) )
5142, 50syl5ibrcom 156 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  = +oo  ->  ( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) ) )
5251imp 123 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C )
)  /\  B  = +oo )  ->  ( ( A +e  -e B )  <_  C 
<->  A  <_  ( C +e B ) ) )
53 simpr2 994 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  ->  B  =/= -oo )
542, 53jca 304 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  e.  RR*  /\  B  =/= -oo )
)
55 xrnemnf 9713 . . 3  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
5654, 55sylib 121 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( B  e.  RR  \/  B  = +oo ) )
5714, 52, 56mpjaodan 788 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) )  -> 
( ( A +e  -e B )  <_  C  <->  A  <_  ( C +e B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    <_ cle 7934    -ecxne 9705   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-xneg 9708  df-xadd 9709
This theorem is referenced by:  xmetrtri  13016
  Copyright terms: Public domain W3C validator