| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xlesubadd | Unicode version | ||
| Description: Under certain conditions, the conclusion of lesubadd 8581 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xlesubadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . . . . 6
| |
| 2 | simpl2 1025 |
. . . . . . 7
| |
| 3 | 2 | xnegcld 10051 |
. . . . . 6
|
| 4 | xaddcl 10056 |
. . . . . 6
| |
| 5 | 1, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | simpll3 1062 |
. . . 4
| |
| 8 | simpr 110 |
. . . 4
| |
| 9 | xleadd1 10071 |
. . . 4
| |
| 10 | 6, 7, 8, 9 | syl3anc 1271 |
. . 3
|
| 11 | xnpcan 10068 |
. . . . 5
| |
| 12 | 1, 11 | sylan 283 |
. . . 4
|
| 13 | 12 | breq1d 4093 |
. . 3
|
| 14 | 10, 13 | bitrd 188 |
. 2
|
| 15 | simpr3 1029 |
. . . . . . 7
| |
| 16 | oveq1 6008 |
. . . . . . . . 9
| |
| 17 | pnfaddmnf 10046 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqtrdi 2278 |
. . . . . . . 8
|
| 19 | 18 | breq1d 4093 |
. . . . . . 7
|
| 20 | 15, 19 | syl5ibrcom 157 |
. . . . . 6
|
| 21 | xaddmnf1 10044 |
. . . . . . . . 9
| |
| 22 | 21 | ex 115 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | simpl3 1026 |
. . . . . . . . 9
| |
| 25 | mnfle 9988 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
|
| 27 | breq1 4086 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl5ibrcom 157 |
. . . . . . 7
|
| 29 | 23, 28 | syld 45 |
. . . . . 6
|
| 30 | xrpnfdc 10038 |
. . . . . . . 8
| |
| 31 | dcne 2411 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . 7
|
| 33 | 1, 32 | syl 14 |
. . . . . 6
|
| 34 | 20, 29, 33 | mpjaod 723 |
. . . . 5
|
| 35 | pnfge 9985 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | ge0nemnf 10020 |
. . . . . . . 8
| |
| 38 | 24, 15, 37 | syl2anc 411 |
. . . . . . 7
|
| 39 | xaddpnf1 10042 |
. . . . . . 7
| |
| 40 | 24, 38, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 36, 40 | breqtrrd 4111 |
. . . . 5
|
| 42 | 34, 41 | 2thd 175 |
. . . 4
|
| 43 | xnegeq 10023 |
. . . . . . . 8
| |
| 44 | xnegpnf 10024 |
. . . . . . . 8
| |
| 45 | 43, 44 | eqtrdi 2278 |
. . . . . . 7
|
| 46 | 45 | oveq2d 6017 |
. . . . . 6
|
| 47 | 46 | breq1d 4093 |
. . . . 5
|
| 48 | oveq2 6009 |
. . . . . 6
| |
| 49 | 48 | breq2d 4095 |
. . . . 5
|
| 50 | 47, 49 | bibi12d 235 |
. . . 4
|
| 51 | 42, 50 | syl5ibrcom 157 |
. . 3
|
| 52 | 51 | imp 124 |
. 2
|
| 53 | simpr2 1028 |
. . . 4
| |
| 54 | 2, 53 | jca 306 |
. . 3
|
| 55 | xrnemnf 9973 |
. . 3
| |
| 56 | 54, 55 | sylib 122 |
. 2
|
| 57 | 14, 52, 56 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-xneg 9968 df-xadd 9969 |
| This theorem is referenced by: xmetrtri 15050 |
| Copyright terms: Public domain | W3C validator |