| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xlesubadd | Unicode version | ||
| Description: Under certain conditions, the conclusion of lesubadd 8542 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xlesubadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . 6
| |
| 2 | simpl2 1004 |
. . . . . . 7
| |
| 3 | 2 | xnegcld 10012 |
. . . . . 6
|
| 4 | xaddcl 10017 |
. . . . . 6
| |
| 5 | 1, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | simpll3 1041 |
. . . 4
| |
| 8 | simpr 110 |
. . . 4
| |
| 9 | xleadd1 10032 |
. . . 4
| |
| 10 | 6, 7, 8, 9 | syl3anc 1250 |
. . 3
|
| 11 | xnpcan 10029 |
. . . . 5
| |
| 12 | 1, 11 | sylan 283 |
. . . 4
|
| 13 | 12 | breq1d 4069 |
. . 3
|
| 14 | 10, 13 | bitrd 188 |
. 2
|
| 15 | simpr3 1008 |
. . . . . . 7
| |
| 16 | oveq1 5974 |
. . . . . . . . 9
| |
| 17 | pnfaddmnf 10007 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqtrdi 2256 |
. . . . . . . 8
|
| 19 | 18 | breq1d 4069 |
. . . . . . 7
|
| 20 | 15, 19 | syl5ibrcom 157 |
. . . . . 6
|
| 21 | xaddmnf1 10005 |
. . . . . . . . 9
| |
| 22 | 21 | ex 115 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | simpl3 1005 |
. . . . . . . . 9
| |
| 25 | mnfle 9949 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
|
| 27 | breq1 4062 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl5ibrcom 157 |
. . . . . . 7
|
| 29 | 23, 28 | syld 45 |
. . . . . 6
|
| 30 | xrpnfdc 9999 |
. . . . . . . 8
| |
| 31 | dcne 2389 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . 7
|
| 33 | 1, 32 | syl 14 |
. . . . . 6
|
| 34 | 20, 29, 33 | mpjaod 720 |
. . . . 5
|
| 35 | pnfge 9946 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | ge0nemnf 9981 |
. . . . . . . 8
| |
| 38 | 24, 15, 37 | syl2anc 411 |
. . . . . . 7
|
| 39 | xaddpnf1 10003 |
. . . . . . 7
| |
| 40 | 24, 38, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 36, 40 | breqtrrd 4087 |
. . . . 5
|
| 42 | 34, 41 | 2thd 175 |
. . . 4
|
| 43 | xnegeq 9984 |
. . . . . . . 8
| |
| 44 | xnegpnf 9985 |
. . . . . . . 8
| |
| 45 | 43, 44 | eqtrdi 2256 |
. . . . . . 7
|
| 46 | 45 | oveq2d 5983 |
. . . . . 6
|
| 47 | 46 | breq1d 4069 |
. . . . 5
|
| 48 | oveq2 5975 |
. . . . . 6
| |
| 49 | 48 | breq2d 4071 |
. . . . 5
|
| 50 | 47, 49 | bibi12d 235 |
. . . 4
|
| 51 | 42, 50 | syl5ibrcom 157 |
. . 3
|
| 52 | 51 | imp 124 |
. 2
|
| 53 | simpr2 1007 |
. . . 4
| |
| 54 | 2, 53 | jca 306 |
. . 3
|
| 55 | xrnemnf 9934 |
. . 3
| |
| 56 | 54, 55 | sylib 122 |
. 2
|
| 57 | 14, 52, 56 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-xneg 9929 df-xadd 9930 |
| This theorem is referenced by: xmetrtri 14963 |
| Copyright terms: Public domain | W3C validator |