| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xlesubadd | Unicode version | ||
| Description: Under certain conditions, the conclusion of lesubadd 8507 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xlesubadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . 6
| |
| 2 | simpl2 1004 |
. . . . . . 7
| |
| 3 | 2 | xnegcld 9977 |
. . . . . 6
|
| 4 | xaddcl 9982 |
. . . . . 6
| |
| 5 | 1, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | simpll3 1041 |
. . . 4
| |
| 8 | simpr 110 |
. . . 4
| |
| 9 | xleadd1 9997 |
. . . 4
| |
| 10 | 6, 7, 8, 9 | syl3anc 1250 |
. . 3
|
| 11 | xnpcan 9994 |
. . . . 5
| |
| 12 | 1, 11 | sylan 283 |
. . . 4
|
| 13 | 12 | breq1d 4054 |
. . 3
|
| 14 | 10, 13 | bitrd 188 |
. 2
|
| 15 | simpr3 1008 |
. . . . . . 7
| |
| 16 | oveq1 5951 |
. . . . . . . . 9
| |
| 17 | pnfaddmnf 9972 |
. . . . . . . . 9
| |
| 18 | 16, 17 | eqtrdi 2254 |
. . . . . . . 8
|
| 19 | 18 | breq1d 4054 |
. . . . . . 7
|
| 20 | 15, 19 | syl5ibrcom 157 |
. . . . . 6
|
| 21 | xaddmnf1 9970 |
. . . . . . . . 9
| |
| 22 | 21 | ex 115 |
. . . . . . . 8
|
| 23 | 1, 22 | syl 14 |
. . . . . . 7
|
| 24 | simpl3 1005 |
. . . . . . . . 9
| |
| 25 | mnfle 9914 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
|
| 27 | breq1 4047 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl5ibrcom 157 |
. . . . . . 7
|
| 29 | 23, 28 | syld 45 |
. . . . . 6
|
| 30 | xrpnfdc 9964 |
. . . . . . . 8
| |
| 31 | dcne 2387 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . 7
|
| 33 | 1, 32 | syl 14 |
. . . . . 6
|
| 34 | 20, 29, 33 | mpjaod 720 |
. . . . 5
|
| 35 | pnfge 9911 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | ge0nemnf 9946 |
. . . . . . . 8
| |
| 38 | 24, 15, 37 | syl2anc 411 |
. . . . . . 7
|
| 39 | xaddpnf1 9968 |
. . . . . . 7
| |
| 40 | 24, 38, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 36, 40 | breqtrrd 4072 |
. . . . 5
|
| 42 | 34, 41 | 2thd 175 |
. . . 4
|
| 43 | xnegeq 9949 |
. . . . . . . 8
| |
| 44 | xnegpnf 9950 |
. . . . . . . 8
| |
| 45 | 43, 44 | eqtrdi 2254 |
. . . . . . 7
|
| 46 | 45 | oveq2d 5960 |
. . . . . 6
|
| 47 | 46 | breq1d 4054 |
. . . . 5
|
| 48 | oveq2 5952 |
. . . . . 6
| |
| 49 | 48 | breq2d 4056 |
. . . . 5
|
| 50 | 47, 49 | bibi12d 235 |
. . . 4
|
| 51 | 42, 50 | syl5ibrcom 157 |
. . 3
|
| 52 | 51 | imp 124 |
. 2
|
| 53 | simpr2 1007 |
. . . 4
| |
| 54 | 2, 53 | jca 306 |
. . 3
|
| 55 | xrnemnf 9899 |
. . 3
| |
| 56 | 54, 55 | sylib 122 |
. 2
|
| 57 | 14, 52, 56 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-xneg 9894 df-xadd 9895 |
| This theorem is referenced by: xmetrtri 14848 |
| Copyright terms: Public domain | W3C validator |