| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xlesubadd | Unicode version | ||
| Description: Under certain conditions, the conclusion of lesubadd 8461 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| xlesubadd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1002 | 
. . . . . 6
 | |
| 2 | simpl2 1003 | 
. . . . . . 7
 | |
| 3 | 2 | xnegcld 9930 | 
. . . . . 6
 | 
| 4 | xaddcl 9935 | 
. . . . . 6
 | |
| 5 | 1, 3, 4 | syl2anc 411 | 
. . . . 5
 | 
| 6 | 5 | adantr 276 | 
. . . 4
 | 
| 7 | simpll3 1040 | 
. . . 4
 | |
| 8 | simpr 110 | 
. . . 4
 | |
| 9 | xleadd1 9950 | 
. . . 4
 | |
| 10 | 6, 7, 8, 9 | syl3anc 1249 | 
. . 3
 | 
| 11 | xnpcan 9947 | 
. . . . 5
 | |
| 12 | 1, 11 | sylan 283 | 
. . . 4
 | 
| 13 | 12 | breq1d 4043 | 
. . 3
 | 
| 14 | 10, 13 | bitrd 188 | 
. 2
 | 
| 15 | simpr3 1007 | 
. . . . . . 7
 | |
| 16 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 17 | pnfaddmnf 9925 | 
. . . . . . . . 9
 | |
| 18 | 16, 17 | eqtrdi 2245 | 
. . . . . . . 8
 | 
| 19 | 18 | breq1d 4043 | 
. . . . . . 7
 | 
| 20 | 15, 19 | syl5ibrcom 157 | 
. . . . . 6
 | 
| 21 | xaddmnf1 9923 | 
. . . . . . . . 9
 | |
| 22 | 21 | ex 115 | 
. . . . . . . 8
 | 
| 23 | 1, 22 | syl 14 | 
. . . . . . 7
 | 
| 24 | simpl3 1004 | 
. . . . . . . . 9
 | |
| 25 | mnfle 9867 | 
. . . . . . . . 9
 | |
| 26 | 24, 25 | syl 14 | 
. . . . . . . 8
 | 
| 27 | breq1 4036 | 
. . . . . . . 8
 | |
| 28 | 26, 27 | syl5ibrcom 157 | 
. . . . . . 7
 | 
| 29 | 23, 28 | syld 45 | 
. . . . . 6
 | 
| 30 | xrpnfdc 9917 | 
. . . . . . . 8
 | |
| 31 | dcne 2378 | 
. . . . . . . 8
 | |
| 32 | 30, 31 | sylib 122 | 
. . . . . . 7
 | 
| 33 | 1, 32 | syl 14 | 
. . . . . 6
 | 
| 34 | 20, 29, 33 | mpjaod 719 | 
. . . . 5
 | 
| 35 | pnfge 9864 | 
. . . . . . 7
 | |
| 36 | 1, 35 | syl 14 | 
. . . . . 6
 | 
| 37 | ge0nemnf 9899 | 
. . . . . . . 8
 | |
| 38 | 24, 15, 37 | syl2anc 411 | 
. . . . . . 7
 | 
| 39 | xaddpnf1 9921 | 
. . . . . . 7
 | |
| 40 | 24, 38, 39 | syl2anc 411 | 
. . . . . 6
 | 
| 41 | 36, 40 | breqtrrd 4061 | 
. . . . 5
 | 
| 42 | 34, 41 | 2thd 175 | 
. . . 4
 | 
| 43 | xnegeq 9902 | 
. . . . . . . 8
 | |
| 44 | xnegpnf 9903 | 
. . . . . . . 8
 | |
| 45 | 43, 44 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 46 | 45 | oveq2d 5938 | 
. . . . . 6
 | 
| 47 | 46 | breq1d 4043 | 
. . . . 5
 | 
| 48 | oveq2 5930 | 
. . . . . 6
 | |
| 49 | 48 | breq2d 4045 | 
. . . . 5
 | 
| 50 | 47, 49 | bibi12d 235 | 
. . . 4
 | 
| 51 | 42, 50 | syl5ibrcom 157 | 
. . 3
 | 
| 52 | 51 | imp 124 | 
. 2
 | 
| 53 | simpr2 1006 | 
. . . 4
 | |
| 54 | 2, 53 | jca 306 | 
. . 3
 | 
| 55 | xrnemnf 9852 | 
. . 3
 | |
| 56 | 54, 55 | sylib 122 | 
. 2
 | 
| 57 | 14, 52, 56 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 | 
| This theorem is referenced by: xmetrtri 14612 | 
| Copyright terms: Public domain | W3C validator |