ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xposdif Unicode version

Theorem xposdif 10004
Description: Extended real version of posdif 8528. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
xposdif  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )

Proof of Theorem xposdif
StepHypRef Expression
1 elxr 9898 . . 3  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
2 elxr 9898 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
3 posdif 8528 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
4 rexsub 9975 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B +e  -e A )  =  ( B  -  A
) )
54ancoms 268 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B +e  -e A )  =  ( B  -  A
) )
65breq2d 4056 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B +e  -e
A )  <->  0  <  ( B  -  A ) ) )
73, 6bitr4d 191 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
87ex 115 . . . . . 6  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
9 rexr 8118 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  RR* )
10 pnfnlt 9909 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  -. +oo  <  B )
1110adantl 277 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
129, 11sylan2 286 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  -. +oo  <  B
)
13 simpl 109 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  A  = +oo )
1413breq1d 4054 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( A  <  B  <-> +oo 
<  B ) )
1512, 14mtbird 675 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  -.  A  <  B
)
16 0xr 8119 . . . . . . . . . 10  |-  0  e.  RR*
17 nltmnf 9910 . . . . . . . . . 10  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
1816, 17ax-mp 5 . . . . . . . . 9  |-  -.  0  < -oo
19 xnegeq 9949 . . . . . . . . . . . . . 14  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
2019adantr 276 . . . . . . . . . . . . 13  |-  ( ( A  = +oo  /\  B  e.  RR )  -> 
-e A  = 
-e +oo )
21 xnegpnf 9950 . . . . . . . . . . . . 13  |-  -e +oo  = -oo
2220, 21eqtrdi 2254 . . . . . . . . . . . 12  |-  ( ( A  = +oo  /\  B  e.  RR )  -> 
-e A  = -oo )
2322oveq2d 5960 . . . . . . . . . . 11  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( B +e  -e A )  =  ( B +e -oo ) )
24 renepnf 8120 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  =/= +oo )
2524adantl 277 . . . . . . . . . . . 12  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  B  =/= +oo )
26 xaddmnf1 9970 . . . . . . . . . . . 12  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( B +e -oo )  = -oo )
279, 25, 26syl2an2 594 . . . . . . . . . . 11  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( B +e -oo )  = -oo )
2823, 27eqtrd 2238 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( B +e  -e A )  = -oo )
2928breq2d 4056 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( 0  <  ( B +e  -e
A )  <->  0  < -oo ) )
3018, 29mtbiri 677 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  -.  0  <  ( B +e  -e
A ) )
3115, 302falsed 704 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
3231ex 115 . . . . . 6  |-  ( A  = +oo  ->  ( B  e.  RR  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
33 simpl 109 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  A  = -oo )
34 mnflt 9905 . . . . . . . . . 10  |-  ( B  e.  RR  -> -oo  <  B )
3534adantl 277 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  -> -oo  <  B )
3633, 35eqbrtrd 4066 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  A  <  B )
37 0ltpnf 9904 . . . . . . . . 9  |-  0  < +oo
38 xnegeq 9949 . . . . . . . . . . . . 13  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
39 xnegmnf 9951 . . . . . . . . . . . . 13  |-  -e -oo  = +oo
4038, 39eqtrdi 2254 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  -e
A  = +oo )
4140oveq2d 5960 . . . . . . . . . . 11  |-  ( A  = -oo  ->  ( B +e  -e
A )  =  ( B +e +oo ) )
4241adantr 276 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B +e  -e A )  =  ( B +e +oo ) )
43 renemnf 8121 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  =/= -oo )
4443adantl 277 . . . . . . . . . . 11  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  B  =/= -oo )
45 xaddpnf1 9968 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
469, 44, 45syl2an2 594 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B +e +oo )  = +oo )
4742, 46eqtrd 2238 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( B +e  -e A )  = +oo )
4837, 47breqtrrid 4082 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  0  <  ( B +e  -e
A ) )
4936, 482thd 175 . . . . . . 7  |-  ( ( A  = -oo  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
5049ex 115 . . . . . 6  |-  ( A  = -oo  ->  ( B  e.  RR  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
518, 32, 503jaoi 1316 . . . . 5  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( B  e.  RR  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
522, 51sylbi 121 . . . 4  |-  ( A  e.  RR*  ->  ( B  e.  RR  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
53 ltpnf 9902 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  < +oo )
5453adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  < +oo )
55 simpr 110 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  B  = +oo )
5654, 55breqtrrd 4072 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  A  <  B )
5755oveq1d 5959 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B +e  -e A )  =  ( +oo +e  -e A ) )
58 rexneg 9952 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
59 renegcl 8333 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  -u A  e.  RR )
6058, 59eqeltrd 2282 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  -e
A  e.  RR )
6160rexrd 8122 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  -e
A  e.  RR* )
6261adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e A  e. 
RR* )
6360renemnfd 8124 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  -e
A  =/= -oo )
6463adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e A  =/= -oo )
65 xaddpnf2 9969 . . . . . . . . . . 11  |-  ( ( 
-e A  e. 
RR*  /\  -e A  =/= -oo )  -> 
( +oo +e  -e A )  = +oo )
6662, 64, 65syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( +oo +e  -e A )  = +oo )
6757, 66eqtrd 2238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( B +e  -e A )  = +oo )
6837, 67breqtrrid 4082 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  0  <  ( B +e  -e
A ) )
6956, 682thd 175 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
7069ex 115 . . . . . 6  |-  ( A  e.  RR  ->  ( B  = +oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
71 pnfxr 8125 . . . . . . . . . 10  |- +oo  e.  RR*
72 xrltnr 9901 . . . . . . . . . 10  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
7371, 72ax-mp 5 . . . . . . . . 9  |-  -. +oo  < +oo
74 breq12 4049 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( A  <  B  <-> +oo 
< +oo ) )
7573, 74mtbiri 677 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  = +oo )  ->  -.  A  <  B
)
76 0re 8072 . . . . . . . . . 10  |-  0  e.  RR
7776ltnri 8165 . . . . . . . . 9  |-  -.  0  <  0
78 simpr 110 . . . . . . . . . . . 12  |-  ( ( A  = +oo  /\  B  = +oo )  ->  B  = +oo )
7919, 21eqtrdi 2254 . . . . . . . . . . . . 13  |-  ( A  = +oo  ->  -e
A  = -oo )
8079adantr 276 . . . . . . . . . . . 12  |-  ( ( A  = +oo  /\  B  = +oo )  -> 
-e A  = -oo )
8178, 80oveq12d 5962 . . . . . . . . . . 11  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( B +e  -e A )  =  ( +oo +e -oo ) )
82 pnfaddmnf 9972 . . . . . . . . . . 11  |-  ( +oo +e -oo )  =  0
8381, 82eqtrdi 2254 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( B +e  -e A )  =  0 )
8483breq2d 4056 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( 0  <  ( B +e  -e
A )  <->  0  <  0 ) )
8577, 84mtbiri 677 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  = +oo )  ->  -.  0  <  ( B +e  -e
A ) )
8675, 852falsed 704 . . . . . . 7  |-  ( ( A  = +oo  /\  B  = +oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
8786ex 115 . . . . . 6  |-  ( A  = +oo  ->  ( B  = +oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
88 mnfltpnf 9907 . . . . . . . . 9  |- -oo  < +oo
89 breq12 4049 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  <-> -oo 
< +oo ) )
9088, 89mpbiri 168 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  A  <  B )
91 oveq1 5951 . . . . . . . . . . 11  |-  ( B  = +oo  ->  ( B +e +oo )  =  ( +oo +e +oo ) )
9241, 91sylan9eq 2258 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( B +e  -e A )  =  ( +oo +e +oo ) )
93 pnfnemnf 8127 . . . . . . . . . . 11  |- +oo  =/= -oo
94 xaddpnf1 9968 . . . . . . . . . . 11  |-  ( ( +oo  e.  RR*  /\ +oo  =/= -oo )  ->  ( +oo +e +oo )  = +oo )
9571, 93, 94mp2an 426 . . . . . . . . . 10  |-  ( +oo +e +oo )  = +oo
9692, 95eqtrdi 2254 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( B +e  -e A )  = +oo )
9737, 96breqtrrid 4082 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = +oo )  ->  0  <  ( B +e  -e
A ) )
9890, 972thd 175 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = +oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
9998ex 115 . . . . . 6  |-  ( A  = -oo  ->  ( B  = +oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
10070, 87, 993jaoi 1316 . . . . 5  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( B  = +oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
1012, 100sylbi 121 . . . 4  |-  ( A  e.  RR*  ->  ( B  = +oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
102 rexr 8118 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
103102adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  A  e.  RR* )
104 nltmnf 9910 . . . . . . . . . 10  |-  ( A  e.  RR*  ->  -.  A  < -oo )
105103, 104syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
106 simpr 110 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  B  = -oo )
107106breq2d 4056 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
108105, 107mtbird 675 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  <  B
)
109106oveq1d 5959 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( B +e  -e A )  =  ( -oo +e  -e A ) )
110 rexr 8118 . . . . . . . . . . . . . 14  |-  (  -e A  e.  RR  -> 
-e A  e. 
RR* )
111 renepnf 8120 . . . . . . . . . . . . . 14  |-  (  -e A  e.  RR  -> 
-e A  =/= +oo )
112 xaddmnf2 9971 . . . . . . . . . . . . . 14  |-  ( ( 
-e A  e. 
RR*  /\  -e A  =/= +oo )  -> 
( -oo +e  -e A )  = -oo )
113110, 111, 112syl2anc 411 . . . . . . . . . . . . 13  |-  (  -e A  e.  RR  ->  ( -oo +e  -e A )  = -oo )
11460, 113syl 14 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( -oo +e  -e
A )  = -oo )
115114adantr 276 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( -oo +e  -e A )  = -oo )
116109, 115eqtrd 2238 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( B +e  -e A )  = -oo )
117116breq2d 4056 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( 0  <  ( B +e  -e
A )  <->  0  < -oo ) )
11818, 117mtbiri 677 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  0  <  ( B +e  -e
A ) )
119108, 1182falsed 704 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
120119ex 115 . . . . . 6  |-  ( A  e.  RR  ->  ( B  = -oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
121 eleq1 2268 . . . . . . . . . . . 12  |-  ( A  = +oo  ->  ( A  e.  RR*  <-> +oo  e.  RR* ) )
12271, 121mpbiri 168 . . . . . . . . . . 11  |-  ( A  = +oo  ->  A  e.  RR* )
123122adantr 276 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  = -oo )  ->  A  e.  RR* )
124123, 104syl 14 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = -oo )  ->  -.  A  < -oo )
125 simpr 110 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  = -oo )  ->  B  = -oo )
126125breq2d 4056 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
127124, 126mtbird 675 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  = -oo )  ->  -.  A  <  B
)
12879oveq2d 5960 . . . . . . . . . . . 12  |-  ( A  = +oo  ->  ( B +e  -e
A )  =  ( B +e -oo ) )
129128adantr 276 . . . . . . . . . . 11  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( B +e  -e A )  =  ( B +e -oo ) )
130 mnfxr 8129 . . . . . . . . . . . . 13  |- -oo  e.  RR*
131 eleq1 2268 . . . . . . . . . . . . 13  |-  ( B  = -oo  ->  ( B  e.  RR*  <-> -oo  e.  RR* ) )
132130, 131mpbiri 168 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  B  e.  RR* )
133 mnfnepnf 8128 . . . . . . . . . . . . . 14  |- -oo  =/= +oo
134 neeq1 2389 . . . . . . . . . . . . . 14  |-  ( B  = -oo  ->  ( B  =/= +oo  <-> -oo  =/= +oo )
)
135133, 134mpbiri 168 . . . . . . . . . . . . 13  |-  ( B  = -oo  ->  B  =/= +oo )
136135adantl 277 . . . . . . . . . . . 12  |-  ( ( A  = +oo  /\  B  = -oo )  ->  B  =/= +oo )
137132, 136, 26syl2an2 594 . . . . . . . . . . 11  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( B +e -oo )  = -oo )
138129, 137eqtrd 2238 . . . . . . . . . 10  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( B +e  -e A )  = -oo )
139138breq2d 4056 . . . . . . . . 9  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( 0  <  ( B +e  -e
A )  <->  0  < -oo ) )
14018, 139mtbiri 677 . . . . . . . 8  |-  ( ( A  = +oo  /\  B  = -oo )  ->  -.  0  <  ( B +e  -e
A ) )
141127, 1402falsed 704 . . . . . . 7  |-  ( ( A  = +oo  /\  B  = -oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
142141ex 115 . . . . . 6  |-  ( A  = +oo  ->  ( B  = -oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
143 xrltnr 9901 . . . . . . . . . 10  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
144130, 143ax-mp 5 . . . . . . . . 9  |-  -. -oo  < -oo
145 breq12 4049 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  <-> -oo 
< -oo ) )
146144, 145mtbiri 677 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = -oo )  ->  -.  A  <  B
)
147 oveq1 5951 . . . . . . . . . . . 12  |-  ( B  = -oo  ->  ( B +e +oo )  =  ( -oo +e +oo ) )
14841, 147sylan9eq 2258 . . . . . . . . . . 11  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( B +e  -e A )  =  ( -oo +e +oo ) )
149 mnfaddpnf 9973 . . . . . . . . . . 11  |-  ( -oo +e +oo )  =  0
150148, 149eqtrdi 2254 . . . . . . . . . 10  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( B +e  -e A )  =  0 )
151150breq2d 4056 . . . . . . . . 9  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( 0  <  ( B +e  -e
A )  <->  0  <  0 ) )
15277, 151mtbiri 677 . . . . . . . 8  |-  ( ( A  = -oo  /\  B  = -oo )  ->  -.  0  <  ( B +e  -e
A ) )
153146, 1522falsed 704 . . . . . . 7  |-  ( ( A  = -oo  /\  B  = -oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
154153ex 115 . . . . . 6  |-  ( A  = -oo  ->  ( B  = -oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
155120, 142, 1543jaoi 1316 . . . . 5  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( B  = -oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
1562, 155sylbi 121 . . . 4  |-  ( A  e.  RR*  ->  ( B  = -oo  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
15752, 101, 1563jaod 1317 . . 3  |-  ( A  e.  RR*  ->  ( ( B  e.  RR  \/  B  = +oo  \/  B  = -oo )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
1581, 157biimtrid 152 . 2  |-  ( A  e.  RR*  ->  ( B  e.  RR*  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) ) )
159158imp 124 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2176    =/= wne 2376   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107    - cmin 8243   -ucneg 8244    -ecxne 9891   +ecxad 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-sub 8245  df-neg 8246  df-xneg 9894  df-xadd 9895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator