ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegcl Unicode version

Theorem xnegcl 9768
Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegcl  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )

Proof of Theorem xnegcl
StepHypRef Expression
1 elxr 9712 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9766 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
3 renegcl 8159 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
42, 3eqeltrd 2243 . . . 4  |-  ( A  e.  RR  ->  -e
A  e.  RR )
54rexrd 7948 . . 3  |-  ( A  e.  RR  ->  -e
A  e.  RR* )
6 xnegeq 9763 . . . 4  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
7 xnegpnf 9764 . . . . 5  |-  -e +oo  = -oo
8 mnfxr 7955 . . . . 5  |- -oo  e.  RR*
97, 8eqeltri 2239 . . . 4  |-  -e +oo  e.  RR*
106, 9eqeltrdi 2257 . . 3  |-  ( A  = +oo  ->  -e
A  e.  RR* )
11 xnegeq 9763 . . . 4  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
12 xnegmnf 9765 . . . . 5  |-  -e -oo  = +oo
13 pnfxr 7951 . . . . 5  |- +oo  e.  RR*
1412, 13eqeltri 2239 . . . 4  |-  -e -oo  e.  RR*
1511, 14eqeltrdi 2257 . . 3  |-  ( A  = -oo  ->  -e
A  e.  RR* )
165, 10, 153jaoi 1293 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -e
A  e.  RR* )
171, 16sylbi 120 1  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 967    = wceq 1343    e. wcel 2136   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932   -ucneg 8070    -ecxne 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-sub 8071  df-neg 8072  df-xneg 9708
This theorem is referenced by:  xltneg  9772  xleneg  9773  xnegcld  9791  xnegdi  9804  xaddass2  9806  xleadd1  9811  xsubge0  9817  xrnegiso  11203  xrminmax  11206  xrmincl  11207  xrmin1inf  11208  xrmin2inf  11209  xrlemininf  11212  xrminltinf  11213
  Copyright terms: Public domain W3C validator