HomeHome Intuitionistic Logic Explorer
Theorem List (p. 99 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9801-9900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3rp 9801 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  3  e.  RR+
 
Theoremrpre 9802 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  ->  A  e.  RR )
 
Theoremrpxr 9803 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( A  e.  RR+  ->  A  e.  RR* )
 
Theoremrpcn 9804 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  A  e.  CC )
 
Theoremnnrp 9805 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
 |-  ( A  e.  NN  ->  A  e.  RR+ )
 
Theoremrpssre 9806 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
 |-  RR+  C_  RR
 
Theoremrpgt0 9807 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
 |-  ( A  e.  RR+  -> 
 0  <  A )
 
Theoremrpge0 9808 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  -> 
 0  <_  A )
 
Theoremrpregt0 9809 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0 9810 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A )
 )
 
Theoremrpne0 9811 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
 |-  ( A  e.  RR+  ->  A  =/=  0 )
 
Theoremrpap0 9812 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  A #  0 )
 
Theoremrprene0 9813 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpreap0 9814 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A #  0 ) )
 
Theoremrpcnne0 9815 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpcnap0 9816 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A #  0 ) )
 
Theoremralrp 9817 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
 |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  <  x  -> 
 ph ) )
 
Theoremrexrp 9818 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  <  x  /\  ph ) )
 
Theoremrpaddcl 9819 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcl 9820 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
 
Theoremrpdivcl 9821 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR+ )
 
Theoremrpreccl 9822 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
 
Theoremrphalfcl 9823 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  e.  RR+ )
 
Theoremrpgecl 9824 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
 
Theoremrphalflt 9825 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  <  A )
 
Theoremrerpdivcl 9826 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR )
 
Theoremge0p1rp 9827 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrpnegap 9828 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( A  e.  RR+  \/_  -u A  e.  RR+ )
 )
 
Theoremnegelrp 9829 Elementhood of a negation in the positive real numbers. (Contributed by Thierry Arnoux, 19-Sep-2018.)
 |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  A  <  0 ) )
 
Theoremnegelrpd 9830 The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  -u A  e.  RR+ )
 
Theorem0nrp 9831 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |- 
 -.  0  e.  RR+
 
Theoremltsubrp 9832 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  -  B )  <  A )
 
Theoremltaddrp 9833 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  A  <  ( A  +  B )
 )
 
Theoremdifrp 9834 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( B  -  A )  e.  RR+ ) )
 
Theoremelrpd 9835 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremnnrpd 9836 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremzgt1rpn0n1 9837 An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017.) (Proof shortened by AV, 9-Jul-2022.)
 |-  ( B  e.  ( ZZ>=
 `  2 )  ->  ( B  e.  RR+  /\  B  =/=  0  /\  B  =/=  1 ) )
 
Theoremrpred 9838 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrpxrd 9839 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoremrpcnd 9840 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremrpgt0d 9841 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <  A )
 
Theoremrpge0d 9842 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremrpne0d 9843 A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremrpap0d 9844 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A #  0 )
 
Theoremrpregt0d 9845 A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0d 9846 A positive real is real and greater or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A ) )
 
Theoremrprene0d 9847 A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpcnne0d 9848 A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpreccld 9849 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR+ )
 
Theoremrprecred 9850 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR )
 
Theoremrphalfcld 9851 Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  2 )  e.  RR+ )
 
Theoremreclt1d 9852 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  1  <->  1  <  (
 1  /  A )
 ) )
 
Theoremrecgt1d 9853 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  ( 1  /  A )  <  1 ) )
 
Theoremrpaddcld 9854 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcld 9855 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  RR+ )
 
Theoremrpdivcld 9856 Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  B )  e.  RR+ )
 
Theoremltrecd 9857 The reciprocal of both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( 1  /  B )  <  ( 1 
 /  A ) ) )
 
Theoremlerecd 9858 The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( 1  /  B )  <_  ( 1 
 /  A ) ) )
 
Theoremltrec1d 9859 Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  ( 1  /  A )  <  B )   =>    |-  ( ph  ->  ( 1  /  B )  <  A )
 
Theoremlerec2d 9860 Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A 
 <_  ( 1  /  B ) )   =>    |-  ( ph  ->  B  <_  ( 1  /  A ) )
 
Theoremlediv2ad 9861 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  /  B )  <_  ( C  /  A ) )
 
Theoremltdiv2d 9862 Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  /  B )  <  ( C 
 /  A ) ) )
 
Theoremlediv2d 9863 Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  /  B )  <_  ( C 
 /  A ) ) )
 
Theoremledivdivd 9864 Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B ) 
 <_  ( C  /  D ) )   =>    |-  ( ph  ->  ( D  /  C )  <_  ( B  /  A ) )
 
Theoremdivge1 9865 The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  -> 
 1  <_  ( B  /  A ) )
 
Theoremdivlt1lt 9866 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  < 
 1 
 <->  A  <  B ) )
 
Theoremdivle1le 9867 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  <_ 
 1 
 <->  A  <_  B )
 )
 
Theoremledivge1le 9868 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C )
 )  ->  ( A  <_  B  ->  ( A  /  C )  <_  B ) )
 
Theoremge0p1rpd 9869 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrerpdivcld 9870 Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  B )  e. 
 RR )
 
Theoremltsubrpd 9871 Subtracting a positive real from another number decreases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  -  B )  <  A )
 
Theoremltaddrpd 9872 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  A  <  ( A  +  B ) )
 
Theoremltaddrp2d 9873 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  A  <  ( B  +  A ) )
 
Theoremltmulgt11d 9874 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  B  <  ( B  x.  A ) ) )
 
Theoremltmulgt12d 9875 Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  B  <  ( A  x.  B ) ) )
 
Theoremgt0divd 9876 Division of a positive number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 0  <  A  <->  0  <  ( A  /  B ) ) )
 
Theoremge0divd 9877 Division of a nonnegative number by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 0  <_  A  <->  0  <_  ( A  /  B ) ) )
 
Theoremrpgecld 9878 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B 
 <_  A )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremdivge0d 9879 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  0  <_  ( A  /  B ) )
 
Theoremltmul1d 9880 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremltmul2d 9881 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
 
Theoremlemul1d 9882 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremlemul2d 9883 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
 
Theoremltdiv1d 9884 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  /  C )  <  ( B 
 /  C ) ) )
 
Theoremlediv1d 9885 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  /  C )  <_  ( B 
 /  C ) ) )
 
Theoremltmuldivd 9886 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  x.  C )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmuldiv2d 9887 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( C  x.  A )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremlemuldivd 9888 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  x.  C )  <_  B  <->  A  <_  ( B 
 /  C ) ) )
 
Theoremlemuldiv2d 9889 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( C  x.  A )  <_  B  <->  A  <_  ( B 
 /  C ) ) )
 
Theoremltdivmuld 9890 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <  B  <->  A  <  ( C  x.  B ) ) )
 
Theoremltdivmul2d 9891 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <  B  <->  A  <  ( B  x.  C ) ) )
 
Theoremledivmuld 9892 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <_  B  <->  A  <_  ( C  x.  B ) ) )
 
Theoremledivmul2d 9893 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  (
 ( A  /  C )  <_  B  <->  A  <_  ( B  x.  C ) ) )
 
Theoremltmul1dd 9894 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  x.  C )  < 
 ( B  x.  C ) )
 
Theoremltmul2dd 9895 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  x.  A )  < 
 ( C  x.  B ) )
 
Theoremltdiv1dd 9896 Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  /  C )  < 
 ( B  /  C ) )
 
Theoremlediv1dd 9897 Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  /  C )  <_  ( B  /  C ) )
 
Theoremlediv12ad 9898 Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  /  D )  <_  ( B  /  C ) )
 
Theoremltdiv23d 9899 Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B )  <  C )   =>    |-  ( ph  ->  ( A  /  C )  <  B )
 
Theoremlediv23d 9900 Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B ) 
 <_  C )   =>    |-  ( ph  ->  ( A  /  C )  <_  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >