Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegneg | Unicode version |
Description: Extended real version of negneg 8148. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 | |
2 | rexneg 9766 | . . . . 5 | |
3 | xnegeq 9763 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | renegcl 8159 | . . . . 5 | |
6 | rexneg 9766 | . . . . 5 | |
7 | 5, 6 | syl 14 | . . . 4 |
8 | recn 7886 | . . . . 5 | |
9 | 8 | negnegd 8200 | . . . 4 |
10 | 4, 7, 9 | 3eqtrd 2202 | . . 3 |
11 | xnegmnf 9765 | . . . 4 | |
12 | xnegeq 9763 | . . . . . 6 | |
13 | xnegpnf 9764 | . . . . . 6 | |
14 | 12, 13 | eqtrdi 2215 | . . . . 5 |
15 | xnegeq 9763 | . . . . 5 | |
16 | 14, 15 | syl 14 | . . . 4 |
17 | id 19 | . . . 4 | |
18 | 11, 16, 17 | 3eqtr4a 2225 | . . 3 |
19 | xnegeq 9763 | . . . . . 6 | |
20 | 19, 11 | eqtrdi 2215 | . . . . 5 |
21 | xnegeq 9763 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | id 19 | . . . 4 | |
24 | 13, 22, 23 | 3eqtr4a 2225 | . . 3 |
25 | 10, 18, 24 | 3jaoi 1293 | . 2 |
26 | 1, 25 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 967 wceq 1343 wcel 2136 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 cneg 8070 cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-sub 8071 df-neg 8072 df-xneg 9708 |
This theorem is referenced by: xneg11 9770 xltneg 9772 xnegdi 9804 xnpcan 9808 xrnegiso 11203 infxrnegsupex 11204 xrnegcon1d 11205 xrminmax 11206 xrmin1inf 11208 xrmin2inf 11209 xrltmininf 11211 xrlemininf 11212 xrminltinf 11213 xrminadd 11216 |
Copyright terms: Public domain | W3C validator |