ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg Unicode version

Theorem xnegneg 9957
Description: Extended real version of negneg 8324. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg  |-  ( A  e.  RR*  ->  -e  -e A  =  A )

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9900 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9954 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
3 xnegeq 9951 . . . . 5  |-  (  -e A  =  -u A  -> 
-e  -e
A  =  -e -u A )
42, 3syl 14 . . . 4  |-  ( A  e.  RR  ->  -e  -e A  =  -e -u A )
5 renegcl 8335 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
6 rexneg 9954 . . . . 5  |-  ( -u A  e.  RR  ->  -e -u A  =  -u -u A )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  -e -u A  =  -u -u A
)
8 recn 8060 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
98negnegd 8376 . . . 4  |-  ( A  e.  RR  ->  -u -u A  =  A )
104, 7, 93eqtrd 2242 . . 3  |-  ( A  e.  RR  ->  -e  -e A  =  A )
11 xnegmnf 9953 . . . 4  |-  -e -oo  = +oo
12 xnegeq 9951 . . . . . 6  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
13 xnegpnf 9952 . . . . . 6  |-  -e +oo  = -oo
1412, 13eqtrdi 2254 . . . . 5  |-  ( A  = +oo  ->  -e
A  = -oo )
15 xnegeq 9951 . . . . 5  |-  (  -e A  = -oo  -> 
-e  -e
A  =  -e -oo )
1614, 15syl 14 . . . 4  |-  ( A  = +oo  ->  -e  -e A  =  -e -oo )
17 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1811, 16, 173eqtr4a 2264 . . 3  |-  ( A  = +oo  ->  -e  -e A  =  A )
19 xnegeq 9951 . . . . . 6  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
2019, 11eqtrdi 2254 . . . . 5  |-  ( A  = -oo  ->  -e
A  = +oo )
21 xnegeq 9951 . . . . 5  |-  (  -e A  = +oo  -> 
-e  -e
A  =  -e +oo )
2220, 21syl 14 . . . 4  |-  ( A  = -oo  ->  -e  -e A  =  -e +oo )
23 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2413, 22, 233eqtr4a 2264 . . 3  |-  ( A  = -oo  ->  -e  -e A  =  A )
2510, 18, 243jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -e  -e A  =  A )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 980    = wceq 1373    e. wcel 2176   RRcr 7926   +oocpnf 8106   -oocmnf 8107   RR*cxr 8108   -ucneg 8246    -ecxne 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-sub 8247  df-neg 8248  df-xneg 9896
This theorem is referenced by:  xneg11  9958  xltneg  9960  xnegdi  9992  xnpcan  9996  xrnegiso  11606  infxrnegsupex  11607  xrnegcon1d  11608  xrminmax  11609  xrmin1inf  11611  xrmin2inf  11612  xrltmininf  11614  xrlemininf  11615  xrminltinf  11616  xrminadd  11619
  Copyright terms: Public domain W3C validator