ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg Unicode version

Theorem xnegneg 9910
Description: Extended real version of negneg 8278. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg  |-  ( A  e.  RR*  ->  -e  -e A  =  A )

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9853 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9907 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
3 xnegeq 9904 . . . . 5  |-  (  -e A  =  -u A  -> 
-e  -e
A  =  -e -u A )
42, 3syl 14 . . . 4  |-  ( A  e.  RR  ->  -e  -e A  =  -e -u A )
5 renegcl 8289 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
6 rexneg 9907 . . . . 5  |-  ( -u A  e.  RR  ->  -e -u A  =  -u -u A )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  -e -u A  =  -u -u A
)
8 recn 8014 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
98negnegd 8330 . . . 4  |-  ( A  e.  RR  ->  -u -u A  =  A )
104, 7, 93eqtrd 2233 . . 3  |-  ( A  e.  RR  ->  -e  -e A  =  A )
11 xnegmnf 9906 . . . 4  |-  -e -oo  = +oo
12 xnegeq 9904 . . . . . 6  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
13 xnegpnf 9905 . . . . . 6  |-  -e +oo  = -oo
1412, 13eqtrdi 2245 . . . . 5  |-  ( A  = +oo  ->  -e
A  = -oo )
15 xnegeq 9904 . . . . 5  |-  (  -e A  = -oo  -> 
-e  -e
A  =  -e -oo )
1614, 15syl 14 . . . 4  |-  ( A  = +oo  ->  -e  -e A  =  -e -oo )
17 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1811, 16, 173eqtr4a 2255 . . 3  |-  ( A  = +oo  ->  -e  -e A  =  A )
19 xnegeq 9904 . . . . . 6  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
2019, 11eqtrdi 2245 . . . . 5  |-  ( A  = -oo  ->  -e
A  = +oo )
21 xnegeq 9904 . . . . 5  |-  (  -e A  = +oo  -> 
-e  -e
A  =  -e +oo )
2220, 21syl 14 . . . 4  |-  ( A  = -oo  ->  -e  -e A  =  -e +oo )
23 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2413, 22, 233eqtr4a 2255 . . 3  |-  ( A  = -oo  ->  -e  -e A  =  A )
2510, 18, 243jaoi 1314 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -e  -e A  =  A )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 979    = wceq 1364    e. wcel 2167   RRcr 7880   +oocpnf 8060   -oocmnf 8061   RR*cxr 8062   -ucneg 8200    -ecxne 9846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-sub 8201  df-neg 8202  df-xneg 9849
This theorem is referenced by:  xneg11  9911  xltneg  9913  xnegdi  9945  xnpcan  9949  xrnegiso  11429  infxrnegsupex  11430  xrnegcon1d  11431  xrminmax  11432  xrmin1inf  11434  xrmin2inf  11435  xrltmininf  11437  xrlemininf  11438  xrminltinf  11439  xrminadd  11442
  Copyright terms: Public domain W3C validator