Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegneg | Unicode version |
Description: Extended real version of negneg 8181. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9745 | . 2 | |
2 | rexneg 9799 | . . . . 5 | |
3 | xnegeq 9796 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | renegcl 8192 | . . . . 5 | |
6 | rexneg 9799 | . . . . 5 | |
7 | 5, 6 | syl 14 | . . . 4 |
8 | recn 7919 | . . . . 5 | |
9 | 8 | negnegd 8233 | . . . 4 |
10 | 4, 7, 9 | 3eqtrd 2212 | . . 3 |
11 | xnegmnf 9798 | . . . 4 | |
12 | xnegeq 9796 | . . . . . 6 | |
13 | xnegpnf 9797 | . . . . . 6 | |
14 | 12, 13 | eqtrdi 2224 | . . . . 5 |
15 | xnegeq 9796 | . . . . 5 | |
16 | 14, 15 | syl 14 | . . . 4 |
17 | id 19 | . . . 4 | |
18 | 11, 16, 17 | 3eqtr4a 2234 | . . 3 |
19 | xnegeq 9796 | . . . . . 6 | |
20 | 19, 11 | eqtrdi 2224 | . . . . 5 |
21 | xnegeq 9796 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | id 19 | . . . 4 | |
24 | 13, 22, 23 | 3eqtr4a 2234 | . . 3 |
25 | 10, 18, 24 | 3jaoi 1303 | . 2 |
26 | 1, 25 | sylbi 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 977 wceq 1353 wcel 2146 cr 7785 cpnf 7963 cmnf 7964 cxr 7965 cneg 8103 cxne 9738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-sub 8104 df-neg 8105 df-xneg 9741 |
This theorem is referenced by: xneg11 9803 xltneg 9805 xnegdi 9837 xnpcan 9841 xrnegiso 11236 infxrnegsupex 11237 xrnegcon1d 11238 xrminmax 11239 xrmin1inf 11241 xrmin2inf 11242 xrltmininf 11244 xrlemininf 11245 xrminltinf 11246 xrminadd 11249 |
Copyright terms: Public domain | W3C validator |