ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegneg Unicode version

Theorem xnegneg 9835
Description: Extended real version of negneg 8209. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg  |-  ( A  e.  RR*  ->  -e  -e A  =  A )

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 9778 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9832 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
3 xnegeq 9829 . . . . 5  |-  (  -e A  =  -u A  -> 
-e  -e
A  =  -e -u A )
42, 3syl 14 . . . 4  |-  ( A  e.  RR  ->  -e  -e A  =  -e -u A )
5 renegcl 8220 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
6 rexneg 9832 . . . . 5  |-  ( -u A  e.  RR  ->  -e -u A  =  -u -u A )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  -e -u A  =  -u -u A
)
8 recn 7946 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
98negnegd 8261 . . . 4  |-  ( A  e.  RR  ->  -u -u A  =  A )
104, 7, 93eqtrd 2214 . . 3  |-  ( A  e.  RR  ->  -e  -e A  =  A )
11 xnegmnf 9831 . . . 4  |-  -e -oo  = +oo
12 xnegeq 9829 . . . . . 6  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
13 xnegpnf 9830 . . . . . 6  |-  -e +oo  = -oo
1412, 13eqtrdi 2226 . . . . 5  |-  ( A  = +oo  ->  -e
A  = -oo )
15 xnegeq 9829 . . . . 5  |-  (  -e A  = -oo  -> 
-e  -e
A  =  -e -oo )
1614, 15syl 14 . . . 4  |-  ( A  = +oo  ->  -e  -e A  =  -e -oo )
17 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1811, 16, 173eqtr4a 2236 . . 3  |-  ( A  = +oo  ->  -e  -e A  =  A )
19 xnegeq 9829 . . . . . 6  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
2019, 11eqtrdi 2226 . . . . 5  |-  ( A  = -oo  ->  -e
A  = +oo )
21 xnegeq 9829 . . . . 5  |-  (  -e A  = +oo  -> 
-e  -e
A  =  -e +oo )
2220, 21syl 14 . . . 4  |-  ( A  = -oo  ->  -e  -e A  =  -e +oo )
23 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2413, 22, 233eqtr4a 2236 . . 3  |-  ( A  = -oo  ->  -e  -e A  =  A )
2510, 18, 243jaoi 1303 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  -e  -e A  =  A )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  -e  -e A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 977    = wceq 1353    e. wcel 2148   RRcr 7812   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993   -ucneg 8131    -ecxne 9771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-sub 8132  df-neg 8133  df-xneg 9774
This theorem is referenced by:  xneg11  9836  xltneg  9838  xnegdi  9870  xnpcan  9874  xrnegiso  11272  infxrnegsupex  11273  xrnegcon1d  11274  xrminmax  11275  xrmin1inf  11277  xrmin2inf  11278  xrltmininf  11280  xrlemininf  11281  xrminltinf  11282  xrminadd  11285
  Copyright terms: Public domain W3C validator