ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegid Unicode version

Theorem xnegid 9981
Description: Extended real version of negid 8319. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid  |-  ( A  e.  RR*  ->  ( A +e  -e
A )  =  0 )

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 9898 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9952 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
32oveq2d 5960 . . . 4  |-  ( A  e.  RR  ->  ( A +e  -e
A )  =  ( A +e -u A ) )
4 renegcl 8333 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
5 rexadd 9974 . . . . 5  |-  ( ( A  e.  RR  /\  -u A  e.  RR )  ->  ( A +e -u A )  =  ( A  +  -u A ) )
64, 5mpdan 421 . . . 4  |-  ( A  e.  RR  ->  ( A +e -u A
)  =  ( A  +  -u A ) )
7 recn 8058 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
87negidd 8373 . . . 4  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
93, 6, 83eqtrd 2242 . . 3  |-  ( A  e.  RR  ->  ( A +e  -e
A )  =  0 )
10 id 19 . . . . 5  |-  ( A  = +oo  ->  A  = +oo )
11 xnegeq 9949 . . . . . 6  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
12 xnegpnf 9950 . . . . . 6  |-  -e +oo  = -oo
1311, 12eqtrdi 2254 . . . . 5  |-  ( A  = +oo  ->  -e
A  = -oo )
1410, 13oveq12d 5962 . . . 4  |-  ( A  = +oo  ->  ( A +e  -e
A )  =  ( +oo +e -oo ) )
15 pnfaddmnf 9972 . . . 4  |-  ( +oo +e -oo )  =  0
1614, 15eqtrdi 2254 . . 3  |-  ( A  = +oo  ->  ( A +e  -e
A )  =  0 )
17 id 19 . . . . 5  |-  ( A  = -oo  ->  A  = -oo )
18 xnegeq 9949 . . . . . 6  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
19 xnegmnf 9951 . . . . . 6  |-  -e -oo  = +oo
2018, 19eqtrdi 2254 . . . . 5  |-  ( A  = -oo  ->  -e
A  = +oo )
2117, 20oveq12d 5962 . . . 4  |-  ( A  = -oo  ->  ( A +e  -e
A )  =  ( -oo +e +oo ) )
22 mnfaddpnf 9973 . . . 4  |-  ( -oo +e +oo )  =  0
2321, 22eqtrdi 2254 . . 3  |-  ( A  = -oo  ->  ( A +e  -e
A )  =  0 )
249, 16, 233jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e  -e
A )  =  0 )
251, 24sylbi 121 1  |-  ( A  e.  RR*  ->  ( A +e  -e
A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 980    = wceq 1373    e. wcel 2176  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106   -ucneg 8244    -ecxne 9891   +ecxad 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-sub 8245  df-neg 8246  df-xneg 9894  df-xadd 9895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator