ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegid Unicode version

Theorem xnegid 9830
Description: Extended real version of negid 8178. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid  |-  ( A  e.  RR*  ->  ( A +e  -e
A )  =  0 )

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 9747 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 rexneg 9801 . . . . 5  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
32oveq2d 5881 . . . 4  |-  ( A  e.  RR  ->  ( A +e  -e
A )  =  ( A +e -u A ) )
4 renegcl 8192 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
5 rexadd 9823 . . . . 5  |-  ( ( A  e.  RR  /\  -u A  e.  RR )  ->  ( A +e -u A )  =  ( A  +  -u A ) )
64, 5mpdan 421 . . . 4  |-  ( A  e.  RR  ->  ( A +e -u A
)  =  ( A  +  -u A ) )
7 recn 7919 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
87negidd 8232 . . . 4  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
93, 6, 83eqtrd 2212 . . 3  |-  ( A  e.  RR  ->  ( A +e  -e
A )  =  0 )
10 id 19 . . . . 5  |-  ( A  = +oo  ->  A  = +oo )
11 xnegeq 9798 . . . . . 6  |-  ( A  = +oo  ->  -e
A  =  -e +oo )
12 xnegpnf 9799 . . . . . 6  |-  -e +oo  = -oo
1311, 12eqtrdi 2224 . . . . 5  |-  ( A  = +oo  ->  -e
A  = -oo )
1410, 13oveq12d 5883 . . . 4  |-  ( A  = +oo  ->  ( A +e  -e
A )  =  ( +oo +e -oo ) )
15 pnfaddmnf 9821 . . . 4  |-  ( +oo +e -oo )  =  0
1614, 15eqtrdi 2224 . . 3  |-  ( A  = +oo  ->  ( A +e  -e
A )  =  0 )
17 id 19 . . . . 5  |-  ( A  = -oo  ->  A  = -oo )
18 xnegeq 9798 . . . . . 6  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
19 xnegmnf 9800 . . . . . 6  |-  -e -oo  = +oo
2018, 19eqtrdi 2224 . . . . 5  |-  ( A  = -oo  ->  -e
A  = +oo )
2117, 20oveq12d 5883 . . . 4  |-  ( A  = -oo  ->  ( A +e  -e
A )  =  ( -oo +e +oo ) )
22 mnfaddpnf 9822 . . . 4  |-  ( -oo +e +oo )  =  0
2321, 22eqtrdi 2224 . . 3  |-  ( A  = -oo  ->  ( A +e  -e
A )  =  0 )
249, 16, 233jaoi 1303 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e  -e
A )  =  0 )
251, 24sylbi 121 1  |-  ( A  e.  RR*  ->  ( A +e  -e
A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 977    = wceq 1353    e. wcel 2146  (class class class)co 5865   RRcr 7785   0cc0 7786    + caddc 7789   +oocpnf 7963   -oocmnf 7964   RR*cxr 7965   -ucneg 8103    -ecxne 9740   +ecxad 9741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-sub 8104  df-neg 8105  df-xneg 9743  df-xadd 9744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator