ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei Unicode version

Theorem iftruei 3540
Description: Inference associated with iftrue 3539. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1  |-  ph
Assertion
Ref Expression
iftruei  |-  if (
ph ,  A ,  B )  =  A

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2  |-  ph
2 iftrue 3539 . 2  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353   ifcif 3534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-if 3535
This theorem is referenced by:  ctmlemr  7106  xnegpnf  9827  xnegmnf  9828  xaddpnf1  9845  xaddpnf2  9846  xaddmnf1  9847  xaddmnf2  9848  pnfaddmnf  9849  mnfaddpnf  9850  iseqf1olemqk  10493  exp0  10523  sumsnf  11416  prodsnf  11599  lcm0val  12064  ennnfonelemj0  12401  ennnfonelem0  12405  mulg0  12987  lgs0  14384  lgs2  14388  peano3nninf  14726  dceqnconst  14777
  Copyright terms: Public domain W3C validator