| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3607. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 |
|
| Ref | Expression |
|---|---|
| iftruei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 |
. 2
| |
| 2 | iftrue 3607 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: ctmlemr 7275 xnegpnf 10024 xnegmnf 10025 xaddpnf1 10042 xaddpnf2 10043 xaddmnf1 10044 xaddmnf2 10045 pnfaddmnf 10046 mnfaddpnf 10047 iseqf1olemqk 10729 exp0 10765 swrd00g 11181 sumsnf 11920 prodsnf 12103 lcm0val 12587 ennnfonelemj0 12972 ennnfonelem0 12976 mulg0 13662 lgs0 15692 lgs2 15696 2lgs2 15781 peano3nninf 16373 dceqnconst 16428 |
| Copyright terms: Public domain | W3C validator |