![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version |
Description: Inference associated with iftrue 3562. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 |
![]() ![]() |
Ref | Expression |
---|---|
iftruei |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 |
. 2
![]() ![]() | |
2 | iftrue 3562 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3558 |
This theorem is referenced by: ctmlemr 7167 xnegpnf 9894 xnegmnf 9895 xaddpnf1 9912 xaddpnf2 9913 xaddmnf1 9914 xaddmnf2 9915 pnfaddmnf 9916 mnfaddpnf 9917 iseqf1olemqk 10578 exp0 10614 sumsnf 11552 prodsnf 11735 lcm0val 12203 ennnfonelemj0 12558 ennnfonelem0 12562 mulg0 13195 lgs0 15129 lgs2 15133 peano3nninf 15497 dceqnconst 15550 |
Copyright terms: Public domain | W3C validator |