| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3566. (Contributed by BJ, 7-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| iftruei.1 | 
 | 
| Ref | Expression | 
|---|---|
| iftruei | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftruei.1 | 
. 2
 | |
| 2 | iftrue 3566 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: ctmlemr 7174 xnegpnf 9903 xnegmnf 9904 xaddpnf1 9921 xaddpnf2 9922 xaddmnf1 9923 xaddmnf2 9924 pnfaddmnf 9925 mnfaddpnf 9926 iseqf1olemqk 10599 exp0 10635 sumsnf 11574 prodsnf 11757 lcm0val 12233 ennnfonelemj0 12618 ennnfonelem0 12622 mulg0 13255 lgs0 15254 lgs2 15258 2lgs2 15343 peano3nninf 15651 dceqnconst 15704 | 
| Copyright terms: Public domain | W3C validator |