![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version |
Description: Inference associated with iftrue 3551. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 |
![]() ![]() |
Ref | Expression |
---|---|
iftruei |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 |
. 2
![]() ![]() | |
2 | iftrue 3551 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-if 3547 |
This theorem is referenced by: ctmlemr 7121 xnegpnf 9842 xnegmnf 9843 xaddpnf1 9860 xaddpnf2 9861 xaddmnf1 9862 xaddmnf2 9863 pnfaddmnf 9864 mnfaddpnf 9865 iseqf1olemqk 10508 exp0 10538 sumsnf 11431 prodsnf 11614 lcm0val 12079 ennnfonelemj0 12416 ennnfonelem0 12420 mulg0 13020 lgs0 14710 lgs2 14714 peano3nninf 15053 dceqnconst 15105 |
Copyright terms: Public domain | W3C validator |