Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version |
Description: Inference associated with iftrue 3530. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 |
Ref | Expression |
---|---|
iftruei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 | |
2 | iftrue 3530 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cif 3525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3526 |
This theorem is referenced by: ctmlemr 7081 xnegpnf 9772 xnegmnf 9773 xaddpnf1 9790 xaddpnf2 9791 xaddmnf1 9792 xaddmnf2 9793 pnfaddmnf 9794 mnfaddpnf 9795 iseqf1olemqk 10437 exp0 10467 sumsnf 11359 prodsnf 11542 lcm0val 12006 ennnfonelemj0 12343 ennnfonelem0 12347 lgs0 13629 lgs2 13633 peano3nninf 13962 dceqnconst 14013 |
Copyright terms: Public domain | W3C validator |