| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3584. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 |
|
| Ref | Expression |
|---|---|
| iftruei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 |
. 2
| |
| 2 | iftrue 3584 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: ctmlemr 7236 xnegpnf 9985 xnegmnf 9986 xaddpnf1 10003 xaddpnf2 10004 xaddmnf1 10005 xaddmnf2 10006 pnfaddmnf 10007 mnfaddpnf 10008 iseqf1olemqk 10689 exp0 10725 swrd00g 11140 sumsnf 11835 prodsnf 12018 lcm0val 12502 ennnfonelemj0 12887 ennnfonelem0 12891 mulg0 13576 lgs0 15605 lgs2 15609 2lgs2 15694 peano3nninf 16146 dceqnconst 16201 |
| Copyright terms: Public domain | W3C validator |