![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version |
Description: Inference associated with iftrue 3563. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 |
![]() ![]() |
Ref | Expression |
---|---|
iftruei |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 |
. 2
![]() ![]() | |
2 | iftrue 3563 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3559 |
This theorem is referenced by: ctmlemr 7169 xnegpnf 9897 xnegmnf 9898 xaddpnf1 9915 xaddpnf2 9916 xaddmnf1 9917 xaddmnf2 9918 pnfaddmnf 9919 mnfaddpnf 9920 iseqf1olemqk 10581 exp0 10617 sumsnf 11555 prodsnf 11738 lcm0val 12206 ennnfonelemj0 12561 ennnfonelem0 12565 mulg0 13198 lgs0 15170 lgs2 15174 2lgs2 15259 peano3nninf 15567 dceqnconst 15620 |
Copyright terms: Public domain | W3C validator |