ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei Unicode version

Theorem iftruei 3567
Description: Inference associated with iftrue 3566. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1  |-  ph
Assertion
Ref Expression
iftruei  |-  if (
ph ,  A ,  B )  =  A

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2  |-  ph
2 iftrue 3566 . 2  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3562
This theorem is referenced by:  ctmlemr  7174  xnegpnf  9903  xnegmnf  9904  xaddpnf1  9921  xaddpnf2  9922  xaddmnf1  9923  xaddmnf2  9924  pnfaddmnf  9925  mnfaddpnf  9926  iseqf1olemqk  10599  exp0  10635  sumsnf  11574  prodsnf  11757  lcm0val  12233  ennnfonelemj0  12618  ennnfonelem0  12622  mulg0  13255  lgs0  15254  lgs2  15258  2lgs2  15343  peano3nninf  15651  dceqnconst  15704
  Copyright terms: Public domain W3C validator