ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei Unicode version

Theorem iftruei 3608
Description: Inference associated with iftrue 3607. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1  |-  ph
Assertion
Ref Expression
iftruei  |-  if (
ph ,  A ,  B )  =  A

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2  |-  ph
2 iftrue 3607 . 2  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  ctmlemr  7275  xnegpnf  10024  xnegmnf  10025  xaddpnf1  10042  xaddpnf2  10043  xaddmnf1  10044  xaddmnf2  10045  pnfaddmnf  10046  mnfaddpnf  10047  iseqf1olemqk  10729  exp0  10765  swrd00g  11181  sumsnf  11920  prodsnf  12103  lcm0val  12587  ennnfonelemj0  12972  ennnfonelem0  12976  mulg0  13662  lgs0  15692  lgs2  15696  2lgs2  15781  peano3nninf  16373  dceqnconst  16428
  Copyright terms: Public domain W3C validator