ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei Unicode version

Theorem iftruei 3563
Description: Inference associated with iftrue 3562. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1  |-  ph
Assertion
Ref Expression
iftruei  |-  if (
ph ,  A ,  B )  =  A

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2  |-  ph
2 iftrue 3562 . 2  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3558
This theorem is referenced by:  ctmlemr  7167  xnegpnf  9894  xnegmnf  9895  xaddpnf1  9912  xaddpnf2  9913  xaddmnf1  9914  xaddmnf2  9915  pnfaddmnf  9916  mnfaddpnf  9917  iseqf1olemqk  10578  exp0  10614  sumsnf  11552  prodsnf  11735  lcm0val  12203  ennnfonelemj0  12558  ennnfonelem0  12562  mulg0  13195  lgs0  15129  lgs2  15133  peano3nninf  15497  dceqnconst  15550
  Copyright terms: Public domain W3C validator