| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3576. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 |
|
| Ref | Expression |
|---|---|
| iftruei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 |
. 2
| |
| 2 | iftrue 3576 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: ctmlemr 7210 xnegpnf 9950 xnegmnf 9951 xaddpnf1 9968 xaddpnf2 9969 xaddmnf1 9970 xaddmnf2 9971 pnfaddmnf 9972 mnfaddpnf 9973 iseqf1olemqk 10652 exp0 10688 swrd00g 11102 sumsnf 11720 prodsnf 11903 lcm0val 12387 ennnfonelemj0 12772 ennnfonelem0 12776 mulg0 13461 lgs0 15490 lgs2 15494 2lgs2 15579 peano3nninf 15944 dceqnconst 15999 |
| Copyright terms: Public domain | W3C validator |