| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3576. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 |
|
| Ref | Expression |
|---|---|
| iftruei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 |
. 2
| |
| 2 | iftrue 3576 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: ctmlemr 7212 xnegpnf 9952 xnegmnf 9953 xaddpnf1 9970 xaddpnf2 9971 xaddmnf1 9972 xaddmnf2 9973 pnfaddmnf 9974 mnfaddpnf 9975 iseqf1olemqk 10654 exp0 10690 swrd00g 11105 sumsnf 11753 prodsnf 11936 lcm0val 12420 ennnfonelemj0 12805 ennnfonelem0 12809 mulg0 13494 lgs0 15523 lgs2 15527 2lgs2 15612 peano3nninf 15981 dceqnconst 16036 |
| Copyright terms: Public domain | W3C validator |