| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | Unicode version | ||
| Description: Inference associated with iftrue 3567. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 |
|
| Ref | Expression |
|---|---|
| iftruei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 |
. 2
| |
| 2 | iftrue 3567 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: ctmlemr 7183 xnegpnf 9920 xnegmnf 9921 xaddpnf1 9938 xaddpnf2 9939 xaddmnf1 9940 xaddmnf2 9941 pnfaddmnf 9942 mnfaddpnf 9943 iseqf1olemqk 10616 exp0 10652 sumsnf 11591 prodsnf 11774 lcm0val 12258 ennnfonelemj0 12643 ennnfonelem0 12647 mulg0 13331 lgs0 15338 lgs2 15342 2lgs2 15427 peano3nninf 15738 dceqnconst 15791 |
| Copyright terms: Public domain | W3C validator |