ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdisj2 Unicode version

Theorem xpdisj2 5056
Description: Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( C  X.  A )  i^i  ( D  X.  B ) )  =  (/) )

Proof of Theorem xpdisj2
StepHypRef Expression
1 inxp 4763 . 2  |-  ( ( C  X.  A )  i^i  ( D  X.  B ) )  =  ( ( C  i^i  D )  X.  ( A  i^i  B ) )
2 xpeq2 4643 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( C  i^i  D )  X.  ( A  i^i  B ) )  =  ( ( C  i^i  D
)  X.  (/) ) )
3 xp0 5050 . . 3  |-  ( ( C  i^i  D )  X.  (/) )  =  (/)
42, 3eqtrdi 2226 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( C  i^i  D )  X.  ( A  i^i  B ) )  =  (/) )
51, 4eqtrid 2222 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( C  X.  A )  i^i  ( D  X.  B ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3130   (/)c0 3424    X. cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by:  xpsndisj  5057
  Copyright terms: Public domain W3C validator