Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpdisj2 | GIF version |
Description: Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
Ref | Expression |
---|---|
xpdisj2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 4738 | . 2 ⊢ ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) | |
2 | xpeq2 4619 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) = ((𝐶 ∩ 𝐷) × ∅)) | |
3 | xp0 5023 | . . 3 ⊢ ((𝐶 ∩ 𝐷) × ∅) = ∅ | |
4 | 2, 3 | eqtrdi 2215 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ∩ 𝐷) × (𝐴 ∩ 𝐵)) = ∅) |
5 | 1, 4 | syl5eq 2211 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∩ cin 3115 ∅c0 3409 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: xpsndisj 5030 |
Copyright terms: Public domain | W3C validator |