ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim Unicode version

Theorem xpriindim 4815
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Distinct variable groups:    x, y, A   
x, C, y
Allowed substitution hints:    B( x, y)    D( x, y)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4812 . 2  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  ( C  X.  |^|_ x  e.  A  B ) )
2 xpiindim 4814 . . 3  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
32ineq2d 3373 . 2  |-  ( E. y  y  e.  A  ->  ( ( C  X.  D )  i^i  ( C  X.  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
41, 3eqtrid 2249 1  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   E.wex 1514    e. wcel 2175    i^i cin 3164   |^|_ciin 3927    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-iin 3929  df-opab 4105  df-xp 4680  df-rel 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator