ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim Unicode version

Theorem xpriindim 4804
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Distinct variable groups:    x, y, A   
x, C, y
Allowed substitution hints:    B( x, y)    D( x, y)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4801 . 2  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  ( C  X.  |^|_ x  e.  A  B ) )
2 xpiindim 4803 . . 3  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
32ineq2d 3364 . 2  |-  ( E. y  y  e.  A  ->  ( ( C  X.  D )  i^i  ( C  X.  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
41, 3eqtrid 2241 1  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167    i^i cin 3156   |^|_ciin 3917    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iin 3919  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator