ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim Unicode version

Theorem xpriindim 4859
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Distinct variable groups:    x, y, A   
x, C, y
Allowed substitution hints:    B( x, y)    D( x, y)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4856 . 2  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  ( C  X.  |^|_ x  e.  A  B ) )
2 xpiindim 4858 . . 3  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
32ineq2d 3405 . 2  |-  ( E. y  y  e.  A  ->  ( ( C  X.  D )  i^i  ( C  X.  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
41, 3eqtrid 2274 1  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200    i^i cin 3196   |^|_ciin 3965    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iin 3967  df-opab 4145  df-xp 4724  df-rel 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator