ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim Unicode version

Theorem xpriindim 4741
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Distinct variable groups:    x, y, A   
x, C, y
Allowed substitution hints:    B( x, y)    D( x, y)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4738 . 2  |-  ( C  X.  ( D  i^i  |^|_
x  e.  A  B
) )  =  ( ( C  X.  D
)  i^i  ( C  X.  |^|_ x  e.  A  B ) )
2 xpiindim 4740 . . 3  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
32ineq2d 3322 . 2  |-  ( E. y  y  e.  A  ->  ( ( C  X.  D )  i^i  ( C  X.  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
41, 3syl5eq 2210 1  |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136    i^i cin 3114   |^|_ciin 3866    X. cxp 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-iin 3868  df-opab 4043  df-xp 4609  df-rel 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator