Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpriindim | Unicode version |
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
Ref | Expression |
---|---|
xpriindim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpindi 4738 | . 2 | |
2 | xpiindim 4740 | . . 3 | |
3 | 2 | ineq2d 3322 | . 2 |
4 | 1, 3 | syl5eq 2210 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wex 1480 wcel 2136 cin 3114 ciin 3866 cxp 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-iin 3868 df-opab 4043 df-xp 4609 df-rel 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |