ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim GIF version

Theorem xpriindim 4767
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim (∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4764 . 2 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵))
2 xpiindim 4766 . . 3 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
32ineq2d 3338 . 2 (∃𝑦 𝑦𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
41, 3eqtrid 2222 1 (∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  cin 3130   ciin 3889   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-iin 3891  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator