| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpriindim | GIF version | ||
| Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpriindim | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpindi 4857 | . 2 ⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) | |
| 2 | xpiindim 4859 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | |
| 3 | 2 | ineq2d 3405 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| 4 | 1, 3 | eqtrid 2274 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∩ cin 3196 ∩ ciin 3966 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iin 3968 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |