Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpriindim | GIF version |
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
Ref | Expression |
---|---|
xpriindim | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpindi 4746 | . 2 ⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) | |
2 | xpiindim 4748 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | |
3 | 2 | ineq2d 3328 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
4 | 1, 3 | eqtrid 2215 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∩ cin 3120 ∩ ciin 3874 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iin 3876 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |