ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpriindim GIF version

Theorem xpriindim 4837
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpriindim (∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem xpriindim
StepHypRef Expression
1 xpindi 4834 . 2 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵))
2 xpiindim 4836 . . 3 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
32ineq2d 3385 . 2 (∃𝑦 𝑦𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
41, 3eqtrid 2254 1 (∃𝑦 𝑦𝐴 → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wex 1518  wcel 2180  cin 3176   ciin 3945   × cxp 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-iin 3947  df-opab 4125  df-xp 4702  df-rel 4703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator