| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpriindim | GIF version | ||
| Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpriindim | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpindi 4817 | . 2 ⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) | |
| 2 | xpiindim 4819 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | |
| 3 | 2 | ineq2d 3375 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| 4 | 1, 3 | eqtrid 2251 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∩ cin 3166 ∩ ciin 3930 × cxp 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-iin 3932 df-opab 4110 df-xp 4685 df-rel 4686 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |