![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpriindim | GIF version |
Description: Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
Ref | Expression |
---|---|
xpriindim | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpindi 4798 | . 2 ⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) | |
2 | xpiindim 4800 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | |
3 | 2 | ineq2d 3361 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((𝐶 × 𝐷) ∩ (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
4 | 1, 3 | eqtrid 2238 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∩ cin 3153 ∩ ciin 3914 × cxp 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-iin 3916 df-opab 4092 df-xp 4666 df-rel 4667 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |