| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fac2 | GIF version | ||
| Description: The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
| Ref | Expression |
|---|---|
| fac2 | ⊢ (!‘2) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9068 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | fveq2i 5564 | . 2 ⊢ (!‘2) = (!‘(1 + 1)) |
| 3 | 1nn0 9284 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 4 | facp1 10841 | . . . 4 ⊢ (1 ∈ ℕ0 → (!‘(1 + 1)) = ((!‘1) · (1 + 1))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(1 + 1)) = ((!‘1) · (1 + 1)) |
| 6 | fac1 10840 | . . . . 5 ⊢ (!‘1) = 1 | |
| 7 | 1p1e2 9126 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 8 | 6, 7 | oveq12i 5937 | . . . 4 ⊢ ((!‘1) · (1 + 1)) = (1 · 2) |
| 9 | 2cn 9080 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 10 | 9 | mullidi 8048 | . . . 4 ⊢ (1 · 2) = 2 |
| 11 | 8, 10 | eqtri 2217 | . . 3 ⊢ ((!‘1) · (1 + 1)) = 2 |
| 12 | 5, 11 | eqtri 2217 | . 2 ⊢ (!‘(1 + 1)) = 2 |
| 13 | 2, 12 | eqtri 2217 | 1 ⊢ (!‘2) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 1c1 7899 + caddc 7901 · cmul 7903 2c2 9060 ℕ0cn0 9268 !cfa 10836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-2 9068 df-n0 9269 df-z 9346 df-uz 9621 df-seqfrec 10559 df-fac 10837 |
| This theorem is referenced by: fac3 10843 bcn2 10875 4bc2eq6 10885 ef4p 11878 efgt1p2 11879 dveflem 15070 |
| Copyright terms: Public domain | W3C validator |