Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac2 | GIF version |
Description: The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
Ref | Expression |
---|---|
fac2 | ⊢ (!‘2) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8937 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | fveq2i 5499 | . 2 ⊢ (!‘2) = (!‘(1 + 1)) |
3 | 1nn0 9151 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | facp1 10664 | . . . 4 ⊢ (1 ∈ ℕ0 → (!‘(1 + 1)) = ((!‘1) · (1 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(1 + 1)) = ((!‘1) · (1 + 1)) |
6 | fac1 10663 | . . . . 5 ⊢ (!‘1) = 1 | |
7 | 1p1e2 8995 | . . . . 5 ⊢ (1 + 1) = 2 | |
8 | 6, 7 | oveq12i 5865 | . . . 4 ⊢ ((!‘1) · (1 + 1)) = (1 · 2) |
9 | 2cn 8949 | . . . . 5 ⊢ 2 ∈ ℂ | |
10 | 9 | mulid2i 7923 | . . . 4 ⊢ (1 · 2) = 2 |
11 | 8, 10 | eqtri 2191 | . . 3 ⊢ ((!‘1) · (1 + 1)) = 2 |
12 | 5, 11 | eqtri 2191 | . 2 ⊢ (!‘(1 + 1)) = 2 |
13 | 2, 12 | eqtri 2191 | 1 ⊢ (!‘2) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 1c1 7775 + caddc 7777 · cmul 7779 2c2 8929 ℕ0cn0 9135 !cfa 10659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-fac 10660 |
This theorem is referenced by: fac3 10666 bcn2 10698 4bc2eq6 10708 ef4p 11657 efgt1p2 11658 dveflem 13481 |
Copyright terms: Public domain | W3C validator |