Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac2 | GIF version |
Description: The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
Ref | Expression |
---|---|
fac2 | ⊢ (!‘2) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8924 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | fveq2i 5497 | . 2 ⊢ (!‘2) = (!‘(1 + 1)) |
3 | 1nn0 9138 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | facp1 10651 | . . . 4 ⊢ (1 ∈ ℕ0 → (!‘(1 + 1)) = ((!‘1) · (1 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(1 + 1)) = ((!‘1) · (1 + 1)) |
6 | fac1 10650 | . . . . 5 ⊢ (!‘1) = 1 | |
7 | 1p1e2 8982 | . . . . 5 ⊢ (1 + 1) = 2 | |
8 | 6, 7 | oveq12i 5862 | . . . 4 ⊢ ((!‘1) · (1 + 1)) = (1 · 2) |
9 | 2cn 8936 | . . . . 5 ⊢ 2 ∈ ℂ | |
10 | 9 | mulid2i 7910 | . . . 4 ⊢ (1 · 2) = 2 |
11 | 8, 10 | eqtri 2191 | . . 3 ⊢ ((!‘1) · (1 + 1)) = 2 |
12 | 5, 11 | eqtri 2191 | . 2 ⊢ (!‘(1 + 1)) = 2 |
13 | 2, 12 | eqtri 2191 | 1 ⊢ (!‘2) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ‘cfv 5196 (class class class)co 5850 1c1 7762 + caddc 7764 · cmul 7766 2c2 8916 ℕ0cn0 9122 !cfa 10646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-2 8924 df-n0 9123 df-z 9200 df-uz 9475 df-seqfrec 10389 df-fac 10647 |
This theorem is referenced by: fac3 10653 bcn2 10685 4bc2eq6 10695 ef4p 11644 efgt1p2 11645 dveflem 13440 |
Copyright terms: Public domain | W3C validator |