Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hash2 | GIF version |
Description: Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
hash2 | ⊢ (♯‘2o) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6460 | . 2 ⊢ 1o ∈ ω | |
2 | df-2o 6358 | . 2 ⊢ 2o = suc 1o | |
3 | hash1 10667 | . 2 ⊢ (♯‘1o) = 1 | |
4 | 1p1e2 8933 | . 2 ⊢ (1 + 1) = 2 | |
5 | 1, 2, 3, 4 | hashp1i 10666 | 1 ⊢ (♯‘2o) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ‘cfv 5167 1oc1o 6350 2oc2o 6351 1c1 7716 2c2 8867 ♯chash 10631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-frec 6332 df-1o 6357 df-2o 6358 df-oadd 6361 df-er 6473 df-en 6679 df-dom 6680 df-fin 6681 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-2 8875 df-n0 9074 df-z 9151 df-uz 9423 df-fz 9895 df-ihash 10632 |
This theorem is referenced by: hash3 10669 pr0hash2ex 10671 |
Copyright terms: Public domain | W3C validator |