ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 GIF version

Theorem fldiv4p1lem1div2 10520
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8715 . . . 4 1 ≤ 1
21a1i 9 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 oveq1 6007 . . . . . . 7 (𝑁 = 3 → (𝑁 / 4) = (3 / 4))
43fveq2d 5630 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
5 3lt4 9279 . . . . . . 7 3 < 4
6 3nn0 9383 . . . . . . . 8 3 ∈ ℕ0
7 4nn 9270 . . . . . . . 8 4 ∈ ℕ
8 divfl0 10511 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
96, 7, 8mp2an 426 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
105, 9mpbi 145 . . . . . 6 (⌊‘(3 / 4)) = 0
114, 10eqtrdi 2278 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1211oveq1d 6015 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
13 0p1e1 9220 . . . 4 (0 + 1) = 1
1412, 13eqtrdi 2278 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
15 oveq1 6007 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
16 3m1e2 9226 . . . . . 6 (3 − 1) = 2
1715, 16eqtrdi 2278 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1817oveq1d 6015 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
19 2div2e1 9239 . . . 4 (2 / 2) = 1
2018, 19eqtrdi 2278 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
212, 14, 203brtr4d 4114 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
22 uzp1 9752 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
23 2re 9176 . . . . . . 7 2 ∈ ℝ
2423leidi 8628 . . . . . 6 2 ≤ 2
2524a1i 9 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
26 oveq1 6007 . . . . . . . . 9 (𝑁 = 5 → (𝑁 / 4) = (5 / 4))
2726fveq2d 5630 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
28 df-5 9168 . . . . . . . . . . . 12 5 = (4 + 1)
2928oveq1i 6010 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
30 4cn 9184 . . . . . . . . . . . . 13 4 ∈ ℂ
31 ax-1cn 8088 . . . . . . . . . . . . 13 1 ∈ ℂ
32 4ap0 9205 . . . . . . . . . . . . 13 4 # 0
3330, 31, 30, 32divdirapi 8912 . . . . . . . . . . . 12 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3430, 32dividapi 8888 . . . . . . . . . . . . 13 (4 / 4) = 1
3534oveq1i 6010 . . . . . . . . . . . 12 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3633, 35eqtri 2250 . . . . . . . . . . 11 ((4 + 1) / 4) = (1 + (1 / 4))
3729, 36eqtri 2250 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3837fveq2i 5629 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
39 1re 8141 . . . . . . . . . . 11 1 ∈ ℝ
40 0le1 8624 . . . . . . . . . . 11 0 ≤ 1
41 4re 9183 . . . . . . . . . . 11 4 ∈ ℝ
42 4pos 9203 . . . . . . . . . . 11 0 < 4
43 divge0 9016 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4439, 40, 41, 42, 43mp4an 427 . . . . . . . . . 10 0 ≤ (1 / 4)
45 1lt4 9281 . . . . . . . . . . 11 1 < 4
46 recgt1 9040 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4741, 42, 46mp2an 426 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4845, 47mpbi 145 . . . . . . . . . 10 (1 / 4) < 1
49 1z 9468 . . . . . . . . . . 11 1 ∈ ℤ
50 znq 9815 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ)
5149, 7, 50mp2an 426 . . . . . . . . . . 11 (1 / 4) ∈ ℚ
52 flqbi2 10506 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
5349, 51, 52mp2an 426 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5444, 48, 53mpbir2an 948 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5538, 54eqtri 2250 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5627, 55eqtrdi 2278 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5756oveq1d 6015 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
58 1p1e2 9223 . . . . . 6 (1 + 1) = 2
5957, 58eqtrdi 2278 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
60 oveq1 6007 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
6130, 31, 28mvrraddi 8359 . . . . . . . 8 (5 − 1) = 4
6260, 61eqtrdi 2278 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
6362oveq1d 6015 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
64 4d2e2 9267 . . . . . 6 (4 / 2) = 2
6563, 64eqtrdi 2278 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6625, 59, 653brtr4d 4114 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
67 eluz2 9724 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
68 znq 9815 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
697, 68mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
70 flqle 10493 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7169, 70syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7271adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7369flqcld 10492 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7473zred 9565 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
75 zre 9446 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
7741a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 ∈ ℝ)
7832a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 # 0)
7976, 77, 78redivclapd 8978 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
8075, 79syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
8139a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 1 ∈ ℝ)
8274, 80, 813jca 1201 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
8382adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
84 leadd1 8573 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8583, 84syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8672, 85mpbid 147 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
87 div4p1lem1div2 9361 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8875, 87sylan 283 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
89 peano2re 8278 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
9074, 89syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
91 peano2re 8278 . . . . . . . . . . . 12 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
9280, 91syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 / 4) + 1) ∈ ℝ)
93 peano2rem 8409 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9493rehalfcld 9354 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
9575, 94syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℝ)
9690, 92, 953jca 1201 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9796adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
98 letr 8225 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9997, 98syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
10086, 88, 99mp2and 433 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
1011003adant1 1039 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10267, 101sylbi 121 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
103 5p1e6 9244 . . . . . 6 (5 + 1) = 6
104103fveq2i 5629 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
105102, 104eleq2s 2324 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10666, 105jaoi 721 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10722, 106syl 14 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10821, 107jaoi 721 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cmin 8313   # cap 8724   / cdiv 8815  cn 9106  2c2 9157  3c3 9158  4c4 9159  5c5 9160  6c6 9161  0cn0 9365  cz 9442  cuz 9718  cq 9810  cfl 10483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fl 10485
This theorem is referenced by:  gausslemma2dlem0f  15727
  Copyright terms: Public domain W3C validator