ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 GIF version

Theorem fldiv4p1lem1div2 10307
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8531 . . . 4 1 ≤ 1
21a1i 9 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 oveq1 5884 . . . . . . 7 (𝑁 = 3 → (𝑁 / 4) = (3 / 4))
43fveq2d 5521 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
5 3lt4 9093 . . . . . . 7 3 < 4
6 3nn0 9196 . . . . . . . 8 3 ∈ ℕ0
7 4nn 9084 . . . . . . . 8 4 ∈ ℕ
8 divfl0 10298 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
96, 7, 8mp2an 426 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
105, 9mpbi 145 . . . . . 6 (⌊‘(3 / 4)) = 0
114, 10eqtrdi 2226 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1211oveq1d 5892 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
13 0p1e1 9035 . . . 4 (0 + 1) = 1
1412, 13eqtrdi 2226 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
15 oveq1 5884 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
16 3m1e2 9041 . . . . . 6 (3 − 1) = 2
1715, 16eqtrdi 2226 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1817oveq1d 5892 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
19 2div2e1 9053 . . . 4 (2 / 2) = 1
2018, 19eqtrdi 2226 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
212, 14, 203brtr4d 4037 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
22 uzp1 9563 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
23 2re 8991 . . . . . . 7 2 ∈ ℝ
2423leidi 8444 . . . . . 6 2 ≤ 2
2524a1i 9 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
26 oveq1 5884 . . . . . . . . 9 (𝑁 = 5 → (𝑁 / 4) = (5 / 4))
2726fveq2d 5521 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
28 df-5 8983 . . . . . . . . . . . 12 5 = (4 + 1)
2928oveq1i 5887 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
30 4cn 8999 . . . . . . . . . . . . 13 4 ∈ ℂ
31 ax-1cn 7906 . . . . . . . . . . . . 13 1 ∈ ℂ
32 4ap0 9020 . . . . . . . . . . . . 13 4 # 0
3330, 31, 30, 32divdirapi 8728 . . . . . . . . . . . 12 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3430, 32dividapi 8704 . . . . . . . . . . . . 13 (4 / 4) = 1
3534oveq1i 5887 . . . . . . . . . . . 12 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3633, 35eqtri 2198 . . . . . . . . . . 11 ((4 + 1) / 4) = (1 + (1 / 4))
3729, 36eqtri 2198 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3837fveq2i 5520 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
39 1re 7958 . . . . . . . . . . 11 1 ∈ ℝ
40 0le1 8440 . . . . . . . . . . 11 0 ≤ 1
41 4re 8998 . . . . . . . . . . 11 4 ∈ ℝ
42 4pos 9018 . . . . . . . . . . 11 0 < 4
43 divge0 8832 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4439, 40, 41, 42, 43mp4an 427 . . . . . . . . . 10 0 ≤ (1 / 4)
45 1lt4 9095 . . . . . . . . . . 11 1 < 4
46 recgt1 8856 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4741, 42, 46mp2an 426 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4845, 47mpbi 145 . . . . . . . . . 10 (1 / 4) < 1
49 1z 9281 . . . . . . . . . . 11 1 ∈ ℤ
50 znq 9626 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ)
5149, 7, 50mp2an 426 . . . . . . . . . . 11 (1 / 4) ∈ ℚ
52 flqbi2 10293 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
5349, 51, 52mp2an 426 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5444, 48, 53mpbir2an 942 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5538, 54eqtri 2198 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5627, 55eqtrdi 2226 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5756oveq1d 5892 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
58 1p1e2 9038 . . . . . 6 (1 + 1) = 2
5957, 58eqtrdi 2226 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
60 oveq1 5884 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
6130, 31, 28mvrraddi 8176 . . . . . . . 8 (5 − 1) = 4
6260, 61eqtrdi 2226 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
6362oveq1d 5892 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
64 4d2e2 9081 . . . . . 6 (4 / 2) = 2
6563, 64eqtrdi 2226 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6625, 59, 653brtr4d 4037 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
67 eluz2 9536 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
68 znq 9626 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
697, 68mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
70 flqle 10280 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7169, 70syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7271adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7369flqcld 10279 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7473zred 9377 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
75 zre 9259 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
7741a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 ∈ ℝ)
7832a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 # 0)
7976, 77, 78redivclapd 8794 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
8075, 79syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
8139a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 1 ∈ ℝ)
8274, 80, 813jca 1177 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
8382adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
84 leadd1 8389 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8583, 84syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8672, 85mpbid 147 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
87 div4p1lem1div2 9174 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8875, 87sylan 283 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
89 peano2re 8095 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
9074, 89syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
91 peano2re 8095 . . . . . . . . . . . 12 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
9280, 91syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 / 4) + 1) ∈ ℝ)
93 peano2rem 8226 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9493rehalfcld 9167 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
9575, 94syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℝ)
9690, 92, 953jca 1177 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9796adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
98 letr 8042 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9997, 98syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
10086, 88, 99mp2and 433 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
1011003adant1 1015 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10267, 101sylbi 121 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
103 5p1e6 9058 . . . . . 6 (5 + 1) = 6
104103fveq2i 5520 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
105102, 104eleq2s 2272 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10666, 105jaoi 716 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10722, 106syl 14 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10821, 107jaoi 716 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  cr 7812  0cc0 7813  1c1 7814   + caddc 7816   < clt 7994  cle 7995  cmin 8130   # cap 8540   / cdiv 8631  cn 8921  2c2 8972  3c3 8973  4c4 8974  5c5 8975  6c6 8976  0cn0 9178  cz 9255  cuz 9530  cq 9621  cfl 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fl 10272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator