ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 GIF version

Theorem fldiv4p1lem1div2 10071
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8327 . . . 4 1 ≤ 1
21a1i 9 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 oveq1 5774 . . . . . . 7 (𝑁 = 3 → (𝑁 / 4) = (3 / 4))
43fveq2d 5418 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
5 3lt4 8885 . . . . . . 7 3 < 4
6 3nn0 8988 . . . . . . . 8 3 ∈ ℕ0
7 4nn 8876 . . . . . . . 8 4 ∈ ℕ
8 divfl0 10062 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
96, 7, 8mp2an 422 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
105, 9mpbi 144 . . . . . 6 (⌊‘(3 / 4)) = 0
114, 10syl6eq 2186 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1211oveq1d 5782 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
13 0p1e1 8827 . . . 4 (0 + 1) = 1
1412, 13syl6eq 2186 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
15 oveq1 5774 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
16 3m1e2 8833 . . . . . 6 (3 − 1) = 2
1715, 16syl6eq 2186 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1817oveq1d 5782 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
19 2div2e1 8845 . . . 4 (2 / 2) = 1
2018, 19syl6eq 2186 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
212, 14, 203brtr4d 3955 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
22 uzp1 9352 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
23 2re 8783 . . . . . . 7 2 ∈ ℝ
2423leidi 8240 . . . . . 6 2 ≤ 2
2524a1i 9 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
26 oveq1 5774 . . . . . . . . 9 (𝑁 = 5 → (𝑁 / 4) = (5 / 4))
2726fveq2d 5418 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
28 df-5 8775 . . . . . . . . . . . 12 5 = (4 + 1)
2928oveq1i 5777 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
30 4cn 8791 . . . . . . . . . . . . 13 4 ∈ ℂ
31 ax-1cn 7706 . . . . . . . . . . . . 13 1 ∈ ℂ
32 4ap0 8812 . . . . . . . . . . . . 13 4 # 0
3330, 31, 30, 32divdirapi 8522 . . . . . . . . . . . 12 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3430, 32dividapi 8498 . . . . . . . . . . . . 13 (4 / 4) = 1
3534oveq1i 5777 . . . . . . . . . . . 12 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3633, 35eqtri 2158 . . . . . . . . . . 11 ((4 + 1) / 4) = (1 + (1 / 4))
3729, 36eqtri 2158 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3837fveq2i 5417 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
39 1re 7758 . . . . . . . . . . 11 1 ∈ ℝ
40 0le1 8236 . . . . . . . . . . 11 0 ≤ 1
41 4re 8790 . . . . . . . . . . 11 4 ∈ ℝ
42 4pos 8810 . . . . . . . . . . 11 0 < 4
43 divge0 8624 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4439, 40, 41, 42, 43mp4an 423 . . . . . . . . . 10 0 ≤ (1 / 4)
45 1lt4 8887 . . . . . . . . . . 11 1 < 4
46 recgt1 8648 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4741, 42, 46mp2an 422 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4845, 47mpbi 144 . . . . . . . . . 10 (1 / 4) < 1
49 1z 9073 . . . . . . . . . . 11 1 ∈ ℤ
50 znq 9409 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ)
5149, 7, 50mp2an 422 . . . . . . . . . . 11 (1 / 4) ∈ ℚ
52 flqbi2 10057 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
5349, 51, 52mp2an 422 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5444, 48, 53mpbir2an 926 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5538, 54eqtri 2158 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5627, 55syl6eq 2186 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5756oveq1d 5782 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
58 1p1e2 8830 . . . . . 6 (1 + 1) = 2
5957, 58syl6eq 2186 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
60 oveq1 5774 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
6130, 31, 28mvrraddi 7972 . . . . . . . 8 (5 − 1) = 4
6260, 61syl6eq 2186 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
6362oveq1d 5782 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
64 4d2e2 8873 . . . . . 6 (4 / 2) = 2
6563, 64syl6eq 2186 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6625, 59, 653brtr4d 3955 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
67 eluz2 9325 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
68 znq 9409 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
697, 68mpan2 421 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
70 flqle 10044 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7169, 70syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7271adantr 274 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7369flqcld 10043 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7473zred 9166 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
75 zre 9051 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
7741a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 ∈ ℝ)
7832a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 # 0)
7976, 77, 78redivclapd 8587 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
8075, 79syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
8139a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 1 ∈ ℝ)
8274, 80, 813jca 1161 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
8382adantr 274 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
84 leadd1 8185 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8583, 84syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8672, 85mpbid 146 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
87 div4p1lem1div2 8966 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8875, 87sylan 281 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
89 peano2re 7891 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
9074, 89syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
91 peano2re 7891 . . . . . . . . . . . 12 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
9280, 91syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 / 4) + 1) ∈ ℝ)
93 peano2rem 8022 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9493rehalfcld 8959 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
9575, 94syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℝ)
9690, 92, 953jca 1161 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9796adantr 274 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
98 letr 7840 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9997, 98syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
10086, 88, 99mp2and 429 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
1011003adant1 999 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10267, 101sylbi 120 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
103 5p1e6 8850 . . . . . 6 (5 + 1) = 6
104103fveq2i 5417 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
105102, 104eleq2s 2232 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10666, 105jaoi 705 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10722, 106syl 14 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10821, 107jaoi 705 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  cfv 5118  (class class class)co 5767  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   < clt 7793  cle 7794  cmin 7926   # cap 8336   / cdiv 8425  cn 8713  2c2 8764  3c3 8765  4c4 8766  5c5 8767  6c6 8768  0cn0 8970  cz 9047  cuz 9319  cq 9404  cfl 10034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fl 10036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator