ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 GIF version

Theorem fldiv4p1lem1div2 10331
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8554 . . . 4 1 ≤ 1
21a1i 9 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 oveq1 5899 . . . . . . 7 (𝑁 = 3 → (𝑁 / 4) = (3 / 4))
43fveq2d 5535 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
5 3lt4 9116 . . . . . . 7 3 < 4
6 3nn0 9219 . . . . . . . 8 3 ∈ ℕ0
7 4nn 9107 . . . . . . . 8 4 ∈ ℕ
8 divfl0 10322 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
96, 7, 8mp2an 426 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
105, 9mpbi 145 . . . . . 6 (⌊‘(3 / 4)) = 0
114, 10eqtrdi 2238 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1211oveq1d 5907 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
13 0p1e1 9058 . . . 4 (0 + 1) = 1
1412, 13eqtrdi 2238 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
15 oveq1 5899 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
16 3m1e2 9064 . . . . . 6 (3 − 1) = 2
1715, 16eqtrdi 2238 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1817oveq1d 5907 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
19 2div2e1 9076 . . . 4 (2 / 2) = 1
2018, 19eqtrdi 2238 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
212, 14, 203brtr4d 4050 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
22 uzp1 9586 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
23 2re 9014 . . . . . . 7 2 ∈ ℝ
2423leidi 8467 . . . . . 6 2 ≤ 2
2524a1i 9 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
26 oveq1 5899 . . . . . . . . 9 (𝑁 = 5 → (𝑁 / 4) = (5 / 4))
2726fveq2d 5535 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
28 df-5 9006 . . . . . . . . . . . 12 5 = (4 + 1)
2928oveq1i 5902 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
30 4cn 9022 . . . . . . . . . . . . 13 4 ∈ ℂ
31 ax-1cn 7929 . . . . . . . . . . . . 13 1 ∈ ℂ
32 4ap0 9043 . . . . . . . . . . . . 13 4 # 0
3330, 31, 30, 32divdirapi 8751 . . . . . . . . . . . 12 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3430, 32dividapi 8727 . . . . . . . . . . . . 13 (4 / 4) = 1
3534oveq1i 5902 . . . . . . . . . . . 12 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3633, 35eqtri 2210 . . . . . . . . . . 11 ((4 + 1) / 4) = (1 + (1 / 4))
3729, 36eqtri 2210 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3837fveq2i 5534 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
39 1re 7981 . . . . . . . . . . 11 1 ∈ ℝ
40 0le1 8463 . . . . . . . . . . 11 0 ≤ 1
41 4re 9021 . . . . . . . . . . 11 4 ∈ ℝ
42 4pos 9041 . . . . . . . . . . 11 0 < 4
43 divge0 8855 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4439, 40, 41, 42, 43mp4an 427 . . . . . . . . . 10 0 ≤ (1 / 4)
45 1lt4 9118 . . . . . . . . . . 11 1 < 4
46 recgt1 8879 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4741, 42, 46mp2an 426 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4845, 47mpbi 145 . . . . . . . . . 10 (1 / 4) < 1
49 1z 9304 . . . . . . . . . . 11 1 ∈ ℤ
50 znq 9649 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 4 ∈ ℕ) → (1 / 4) ∈ ℚ)
5149, 7, 50mp2an 426 . . . . . . . . . . 11 (1 / 4) ∈ ℚ
52 flqbi2 10317 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
5349, 51, 52mp2an 426 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5444, 48, 53mpbir2an 944 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5538, 54eqtri 2210 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5627, 55eqtrdi 2238 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5756oveq1d 5907 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
58 1p1e2 9061 . . . . . 6 (1 + 1) = 2
5957, 58eqtrdi 2238 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
60 oveq1 5899 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
6130, 31, 28mvrraddi 8199 . . . . . . . 8 (5 − 1) = 4
6260, 61eqtrdi 2238 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
6362oveq1d 5907 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
64 4d2e2 9104 . . . . . 6 (4 / 2) = 2
6563, 64eqtrdi 2238 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6625, 59, 653brtr4d 4050 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
67 eluz2 9559 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
68 znq 9649 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
697, 68mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
70 flqle 10304 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7169, 70syl 14 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7271adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7369flqcld 10303 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7473zred 9400 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
75 zre 9282 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76 id 19 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
7741a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 ∈ ℝ)
7832a1i 9 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 4 # 0)
7976, 77, 78redivclapd 8817 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
8075, 79syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
8139a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 1 ∈ ℝ)
8274, 80, 813jca 1179 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
8382adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
84 leadd1 8412 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8583, 84syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8672, 85mpbid 147 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
87 div4p1lem1div2 9197 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8875, 87sylan 283 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
89 peano2re 8118 . . . . . . . . . . . 12 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
9074, 89syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
91 peano2re 8118 . . . . . . . . . . . 12 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
9280, 91syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 / 4) + 1) ∈ ℝ)
93 peano2rem 8249 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9493rehalfcld 9190 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
9575, 94syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℝ)
9690, 92, 953jca 1179 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9796adantr 276 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
98 letr 8065 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9997, 98syl 14 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
10086, 88, 99mp2and 433 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
1011003adant1 1017 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10267, 101sylbi 121 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
103 5p1e6 9081 . . . . . 6 (5 + 1) = 6
104103fveq2i 5534 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
105102, 104eleq2s 2284 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10666, 105jaoi 717 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10722, 106syl 14 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10821, 107jaoi 717 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5232  (class class class)co 5892  cr 7835  0cc0 7836  1c1 7837   + caddc 7839   < clt 8017  cle 8018  cmin 8153   # cap 8563   / cdiv 8654  cn 8944  2c2 8995  3c3 8996  4c4 8997  5c5 8998  6c6 8999  0cn0 9201  cz 9278  cuz 9553  cq 9644  cfl 10294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954  ax-arch 7955
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-5 9006  df-6 9007  df-n0 9202  df-z 9279  df-uz 9554  df-q 9645  df-rp 9679  df-fl 10296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator