ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logblt GIF version

Theorem logblt 14865
Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 14780. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
logblt ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌)))

Proof of Theorem logblt
StepHypRef Expression
1 simp2 1000 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝑋 ∈ ℝ+)
21relogcld 14788 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (log‘𝑋) ∈ ℝ)
3 simp3 1001 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝑌 ∈ ℝ+)
43relogcld 14788 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (log‘𝑌) ∈ ℝ)
5 simp1 999 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ‘2))
6 eluzelz 9572 . . . . . 6 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
75, 6syl 14 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝐵 ∈ ℤ)
87zred 9410 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝐵 ∈ ℝ)
9 1z 9314 . . . . 5 1 ∈ ℤ
10 1p1e2 9071 . . . . . . 7 (1 + 1) = 2
1110fveq2i 5540 . . . . . 6 (ℤ‘(1 + 1)) = (ℤ‘2)
125, 11eleqtrrdi 2283 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ‘(1 + 1)))
13 eluzp1l 9588 . . . . 5 ((1 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(1 + 1))) → 1 < 𝐵)
149, 12, 13sylancr 414 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → 1 < 𝐵)
158, 14rplogcld 14794 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (log‘𝐵) ∈ ℝ+)
162, 4, 15ltdiv1d 9778 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → ((log‘𝑋) < (log‘𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵))))
17 logltb 14780 . . 3 ((𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌)))
18173adant1 1017 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌)))
19 relogbval 14854 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
20193adant3 1019 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
21 relogbval 14854 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵)))
22213adant2 1018 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵)))
2320, 22breq12d 4034 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → ((𝐵 logb 𝑋) < (𝐵 logb 𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵))))
2416, 18, 233bitr4d 220 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4021  cfv 5238  (class class class)co 5900  1c1 7847   + caddc 7849   < clt 8027   / cdiv 8664  2c2 9005  cz 9288  cuz 9563  +crp 9689  logclog 14762   logb clogb 14846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966  ax-pre-suploc 7967  ax-addf 7968  ax-mulf 7969
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-disj 3999  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-of 6110  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-frec 6420  df-1o 6445  df-oadd 6449  df-er 6563  df-map 6680  df-pm 6681  df-en 6771  df-dom 6772  df-fin 6773  df-sup 7017  df-inf 7018  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-xneg 9808  df-xadd 9809  df-ioo 9928  df-ico 9930  df-icc 9931  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560  df-fac 10747  df-bc 10769  df-ihash 10797  df-shft 10865  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-clim 11328  df-sumdc 11403  df-ef 11697  df-e 11698  df-rest 12757  df-topgen 12776  df-psmet 13881  df-xmet 13882  df-met 13883  df-bl 13884  df-mopn 13885  df-top 13983  df-topon 13996  df-bases 14028  df-ntr 14081  df-cn 14173  df-cnp 14174  df-tx 14238  df-cncf 14543  df-limced 14610  df-dvap 14611  df-relog 14764  df-logb 14847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator