| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > logblt | GIF version | ||
| Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15513. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| Ref | Expression |
|---|---|
| logblt | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1003 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
| 2 | 1 | relogcld 15521 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑋) ∈ ℝ) |
| 3 | simp3 1004 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑌 ∈ ℝ+) | |
| 4 | 3 | relogcld 15521 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑌) ∈ ℝ) |
| 5 | simp1 1002 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘2)) | |
| 6 | eluzelz 9699 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℤ) | |
| 7 | 5, 6 | syl 14 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℤ) |
| 8 | 7 | zred 9537 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℝ) |
| 9 | 1z 9440 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 10 | 1p1e2 9195 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 11 | 10 | fveq2i 5606 | . . . . . 6 ⊢ (ℤ≥‘(1 + 1)) = (ℤ≥‘2) |
| 12 | 5, 11 | eleqtrrdi 2303 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘(1 + 1))) |
| 13 | eluzp1l 9715 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(1 + 1))) → 1 < 𝐵) | |
| 14 | 9, 12, 13 | sylancr 414 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 1 < 𝐵) |
| 15 | 8, 14 | rplogcld 15527 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝐵) ∈ ℝ+) |
| 16 | 2, 4, 15 | ltdiv1d 9906 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((log‘𝑋) < (log‘𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
| 17 | logltb 15513 | . . 3 ⊢ ((𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) | |
| 18 | 17 | 3adant1 1020 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) |
| 19 | relogbval 15590 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
| 20 | 19 | 3adant3 1022 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
| 21 | relogbval 15590 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) | |
| 22 | 21 | 3adant2 1021 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) |
| 23 | 20, 22 | breq12d 4075 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((𝐵 logb 𝑋) < (𝐵 logb 𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
| 24 | 16, 18, 23 | 3bitr4d 220 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 1c1 7968 + caddc 7970 < clt 8149 / cdiv 8787 2c2 9129 ℤcz 9414 ℤ≥cuz 9690 ℝ+crp 9817 logclog 15495 logb clogb 15582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 ax-pre-suploc 8088 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-disj 4039 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-pm 6768 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-ioo 10056 df-ico 10058 df-icc 10059 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-bc 10937 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-e 12126 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-cn 14827 df-cnp 14828 df-tx 14892 df-cncf 15210 df-limced 15295 df-dvap 15296 df-relog 15497 df-logb 15583 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |