![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > logblt | GIF version |
Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 14780. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
logblt | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
2 | 1 | relogcld 14788 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑋) ∈ ℝ) |
3 | simp3 1001 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑌 ∈ ℝ+) | |
4 | 3 | relogcld 14788 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑌) ∈ ℝ) |
5 | simp1 999 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘2)) | |
6 | eluzelz 9572 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℤ) | |
7 | 5, 6 | syl 14 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℤ) |
8 | 7 | zred 9410 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℝ) |
9 | 1z 9314 | . . . . 5 ⊢ 1 ∈ ℤ | |
10 | 1p1e2 9071 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
11 | 10 | fveq2i 5540 | . . . . . 6 ⊢ (ℤ≥‘(1 + 1)) = (ℤ≥‘2) |
12 | 5, 11 | eleqtrrdi 2283 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘(1 + 1))) |
13 | eluzp1l 9588 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(1 + 1))) → 1 < 𝐵) | |
14 | 9, 12, 13 | sylancr 414 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 1 < 𝐵) |
15 | 8, 14 | rplogcld 14794 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝐵) ∈ ℝ+) |
16 | 2, 4, 15 | ltdiv1d 9778 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((log‘𝑋) < (log‘𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
17 | logltb 14780 | . . 3 ⊢ ((𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) | |
18 | 17 | 3adant1 1017 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (log‘𝑋) < (log‘𝑌))) |
19 | relogbval 14854 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
20 | 19 | 3adant3 1019 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
21 | relogbval 14854 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) | |
22 | 21 | 3adant2 1018 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) |
23 | 20, 22 | breq12d 4034 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((𝐵 logb 𝑋) < (𝐵 logb 𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) < ((log‘𝑌) / (log‘𝐵)))) |
24 | 16, 18, 23 | 3bitr4d 220 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4021 ‘cfv 5238 (class class class)co 5900 1c1 7847 + caddc 7849 < clt 8027 / cdiv 8664 2c2 9005 ℤcz 9288 ℤ≥cuz 9563 ℝ+crp 9689 logclog 14762 logb clogb 14846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 ax-arch 7965 ax-caucvg 7966 ax-pre-suploc 7967 ax-addf 7968 ax-mulf 7969 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-disj 3999 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-isom 5247 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-of 6110 df-1st 6169 df-2nd 6170 df-recs 6334 df-irdg 6399 df-frec 6420 df-1o 6445 df-oadd 6449 df-er 6563 df-map 6680 df-pm 6681 df-en 6771 df-dom 6772 df-fin 6773 df-sup 7017 df-inf 7018 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-n0 9212 df-z 9289 df-uz 9564 df-q 9656 df-rp 9690 df-xneg 9808 df-xadd 9809 df-ioo 9928 df-ico 9930 df-icc 9931 df-fz 10045 df-fzo 10179 df-seqfrec 10485 df-exp 10560 df-fac 10747 df-bc 10769 df-ihash 10797 df-shft 10865 df-cj 10892 df-re 10893 df-im 10894 df-rsqrt 11048 df-abs 11049 df-clim 11328 df-sumdc 11403 df-ef 11697 df-e 11698 df-rest 12757 df-topgen 12776 df-psmet 13881 df-xmet 13882 df-met 13883 df-bl 13884 df-mopn 13885 df-top 13983 df-topon 13996 df-bases 14028 df-ntr 14081 df-cn 14173 df-cnp 14174 df-tx 14238 df-cncf 14543 df-limced 14610 df-dvap 14611 df-relog 14764 df-logb 14847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |