| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version | ||
| Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| 3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9480 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | 2cn 9189 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 3 | 2 | mullidi 8157 | . . . 4 ⊢ (1 · 2) = 2 |
| 4 | 2lt3 9289 | . . . 4 ⊢ 2 < 3 | |
| 5 | 3, 4 | eqbrtri 4104 | . . 3 ⊢ (1 · 2) < 3 |
| 6 | 1re 8153 | . . . 4 ⊢ 1 ∈ ℝ | |
| 7 | 3re 9192 | . . . 4 ⊢ 3 ∈ ℝ | |
| 8 | 2re 9188 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 9 | 2pos 9209 | . . . . 5 ⊢ 0 < 2 | |
| 10 | 8, 9 | pm3.2i 272 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 11 | ltmuldiv 9029 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
| 12 | 6, 7, 10, 11 | mp3an 1371 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 13 | 5, 12 | mpbi 145 | . 2 ⊢ 1 < (3 / 2) |
| 14 | 3lt4 9291 | . . . 4 ⊢ 3 < 4 | |
| 15 | 2t2e4 9273 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 16 | 15 | breq2i 4091 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
| 17 | 14, 16 | mpbir 146 | . . 3 ⊢ 3 < (2 · 2) |
| 18 | 1p1e2 9235 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 19 | 18 | breq2i 4091 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
| 20 | ltdivmul 9031 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
| 21 | 7, 8, 10, 20 | mp3an 1371 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
| 22 | 19, 21 | bitri 184 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
| 23 | 17, 22 | mpbir 146 | . 2 ⊢ (3 / 2) < (1 + 1) |
| 24 | btwnnz 9549 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
| 25 | 1, 13, 23, 24 | mp3an 1371 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℝcr 8006 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 < clt 8189 / cdiv 8827 2c2 9169 3c3 9170 4c4 9171 ℤcz 9454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 |
| This theorem is referenced by: nn0o1gt2 12424 |
| Copyright terms: Public domain | W3C validator |