| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version | ||
| Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| 3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9440 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | 2cn 9149 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 3 | 2 | mullidi 8117 | . . . 4 ⊢ (1 · 2) = 2 |
| 4 | 2lt3 9249 | . . . 4 ⊢ 2 < 3 | |
| 5 | 3, 4 | eqbrtri 4083 | . . 3 ⊢ (1 · 2) < 3 |
| 6 | 1re 8113 | . . . 4 ⊢ 1 ∈ ℝ | |
| 7 | 3re 9152 | . . . 4 ⊢ 3 ∈ ℝ | |
| 8 | 2re 9148 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 9 | 2pos 9169 | . . . . 5 ⊢ 0 < 2 | |
| 10 | 8, 9 | pm3.2i 272 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 11 | ltmuldiv 8989 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
| 12 | 6, 7, 10, 11 | mp3an 1352 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 13 | 5, 12 | mpbi 145 | . 2 ⊢ 1 < (3 / 2) |
| 14 | 3lt4 9251 | . . . 4 ⊢ 3 < 4 | |
| 15 | 2t2e4 9233 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 16 | 15 | breq2i 4070 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
| 17 | 14, 16 | mpbir 146 | . . 3 ⊢ 3 < (2 · 2) |
| 18 | 1p1e2 9195 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 19 | 18 | breq2i 4070 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
| 20 | ltdivmul 8991 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
| 21 | 7, 8, 10, 20 | mp3an 1352 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
| 22 | 19, 21 | bitri 184 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
| 23 | 17, 22 | mpbir 146 | . 2 ⊢ (3 / 2) < (1 + 1) |
| 24 | btwnnz 9509 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
| 25 | 1, 13, 23, 24 | mp3an 1352 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 < clt 8149 / cdiv 8787 2c2 9129 3c3 9130 4c4 9131 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 |
| This theorem is referenced by: nn0o1gt2 12382 |
| Copyright terms: Public domain | W3C validator |