| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version | ||
| Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| 3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9405 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | 2cn 9114 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 3 | 2 | mullidi 8082 | . . . 4 ⊢ (1 · 2) = 2 |
| 4 | 2lt3 9214 | . . . 4 ⊢ 2 < 3 | |
| 5 | 3, 4 | eqbrtri 4068 | . . 3 ⊢ (1 · 2) < 3 |
| 6 | 1re 8078 | . . . 4 ⊢ 1 ∈ ℝ | |
| 7 | 3re 9117 | . . . 4 ⊢ 3 ∈ ℝ | |
| 8 | 2re 9113 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 9 | 2pos 9134 | . . . . 5 ⊢ 0 < 2 | |
| 10 | 8, 9 | pm3.2i 272 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 11 | ltmuldiv 8954 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
| 12 | 6, 7, 10, 11 | mp3an 1350 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 13 | 5, 12 | mpbi 145 | . 2 ⊢ 1 < (3 / 2) |
| 14 | 3lt4 9216 | . . . 4 ⊢ 3 < 4 | |
| 15 | 2t2e4 9198 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 16 | 15 | breq2i 4055 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
| 17 | 14, 16 | mpbir 146 | . . 3 ⊢ 3 < (2 · 2) |
| 18 | 1p1e2 9160 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 19 | 18 | breq2i 4055 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
| 20 | ltdivmul 8956 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
| 21 | 7, 8, 10, 20 | mp3an 1350 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
| 22 | 19, 21 | bitri 184 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
| 23 | 17, 22 | mpbir 146 | . 2 ⊢ (3 / 2) < (1 + 1) |
| 24 | btwnnz 9474 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
| 25 | 1, 13, 23, 24 | mp3an 1350 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℝcr 7931 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 < clt 8114 / cdiv 8752 2c2 9094 3c3 9095 4c4 9096 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 |
| This theorem is referenced by: nn0o1gt2 12260 |
| Copyright terms: Public domain | W3C validator |