Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version |
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9176 | . 2 ⊢ 1 ∈ ℤ | |
2 | 2cn 8887 | . . . . 5 ⊢ 2 ∈ ℂ | |
3 | 2 | mulid2i 7864 | . . . 4 ⊢ (1 · 2) = 2 |
4 | 2lt3 8986 | . . . 4 ⊢ 2 < 3 | |
5 | 3, 4 | eqbrtri 3985 | . . 3 ⊢ (1 · 2) < 3 |
6 | 1re 7860 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 3re 8890 | . . . 4 ⊢ 3 ∈ ℝ | |
8 | 2re 8886 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 2pos 8907 | . . . . 5 ⊢ 0 < 2 | |
10 | 8, 9 | pm3.2i 270 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
11 | ltmuldiv 8728 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
12 | 6, 7, 10, 11 | mp3an 1319 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
13 | 5, 12 | mpbi 144 | . 2 ⊢ 1 < (3 / 2) |
14 | 3lt4 8988 | . . . 4 ⊢ 3 < 4 | |
15 | 2t2e4 8970 | . . . . 5 ⊢ (2 · 2) = 4 | |
16 | 15 | breq2i 3973 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
17 | 14, 16 | mpbir 145 | . . 3 ⊢ 3 < (2 · 2) |
18 | 1p1e2 8933 | . . . . 5 ⊢ (1 + 1) = 2 | |
19 | 18 | breq2i 3973 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
20 | ltdivmul 8730 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
21 | 7, 8, 10, 20 | mp3an 1319 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
22 | 19, 21 | bitri 183 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
23 | 17, 22 | mpbir 145 | . 2 ⊢ (3 / 2) < (1 + 1) |
24 | btwnnz 9241 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
25 | 1, 13, 23, 24 | mp3an 1319 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5818 ℝcr 7714 0cc0 7715 1c1 7716 + caddc 7718 · cmul 7720 < clt 7895 / cdiv 8528 2c2 8867 3c3 8868 4c4 8869 ℤcz 9150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 |
This theorem is referenced by: nn0o1gt2 11777 |
Copyright terms: Public domain | W3C validator |