![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version |
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9281 | . 2 ⊢ 1 ∈ ℤ | |
2 | 2cn 8992 | . . . . 5 ⊢ 2 ∈ ℂ | |
3 | 2 | mullidi 7962 | . . . 4 ⊢ (1 · 2) = 2 |
4 | 2lt3 9091 | . . . 4 ⊢ 2 < 3 | |
5 | 3, 4 | eqbrtri 4026 | . . 3 ⊢ (1 · 2) < 3 |
6 | 1re 7958 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 3re 8995 | . . . 4 ⊢ 3 ∈ ℝ | |
8 | 2re 8991 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 2pos 9012 | . . . . 5 ⊢ 0 < 2 | |
10 | 8, 9 | pm3.2i 272 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
11 | ltmuldiv 8833 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
12 | 6, 7, 10, 11 | mp3an 1337 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
13 | 5, 12 | mpbi 145 | . 2 ⊢ 1 < (3 / 2) |
14 | 3lt4 9093 | . . . 4 ⊢ 3 < 4 | |
15 | 2t2e4 9075 | . . . . 5 ⊢ (2 · 2) = 4 | |
16 | 15 | breq2i 4013 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
17 | 14, 16 | mpbir 146 | . . 3 ⊢ 3 < (2 · 2) |
18 | 1p1e2 9038 | . . . . 5 ⊢ (1 + 1) = 2 | |
19 | 18 | breq2i 4013 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
20 | ltdivmul 8835 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
21 | 7, 8, 10, 20 | mp3an 1337 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
22 | 19, 21 | bitri 184 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
23 | 17, 22 | mpbir 146 | . 2 ⊢ (3 / 2) < (1 + 1) |
24 | btwnnz 9349 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
25 | 1, 13, 23, 24 | mp3an 1337 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 0cc0 7813 1c1 7814 + caddc 7816 · cmul 7818 < clt 7994 / cdiv 8631 2c2 8972 3c3 8973 4c4 8974 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 |
This theorem is referenced by: nn0o1gt2 11912 |
Copyright terms: Public domain | W3C validator |