Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3halfnz | GIF version |
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
3halfnz | ⊢ ¬ (3 / 2) ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9217 | . 2 ⊢ 1 ∈ ℤ | |
2 | 2cn 8928 | . . . . 5 ⊢ 2 ∈ ℂ | |
3 | 2 | mulid2i 7902 | . . . 4 ⊢ (1 · 2) = 2 |
4 | 2lt3 9027 | . . . 4 ⊢ 2 < 3 | |
5 | 3, 4 | eqbrtri 4003 | . . 3 ⊢ (1 · 2) < 3 |
6 | 1re 7898 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 3re 8931 | . . . 4 ⊢ 3 ∈ ℝ | |
8 | 2re 8927 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 2pos 8948 | . . . . 5 ⊢ 0 < 2 | |
10 | 8, 9 | pm3.2i 270 | . . . 4 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
11 | ltmuldiv 8769 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2))) | |
12 | 6, 7, 10, 11 | mp3an 1327 | . . 3 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
13 | 5, 12 | mpbi 144 | . 2 ⊢ 1 < (3 / 2) |
14 | 3lt4 9029 | . . . 4 ⊢ 3 < 4 | |
15 | 2t2e4 9011 | . . . . 5 ⊢ (2 · 2) = 4 | |
16 | 15 | breq2i 3990 | . . . 4 ⊢ (3 < (2 · 2) ↔ 3 < 4) |
17 | 14, 16 | mpbir 145 | . . 3 ⊢ 3 < (2 · 2) |
18 | 1p1e2 8974 | . . . . 5 ⊢ (1 + 1) = 2 | |
19 | 18 | breq2i 3990 | . . . 4 ⊢ ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2) |
20 | ltdivmul 8771 | . . . . 5 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
21 | 7, 8, 10, 20 | mp3an 1327 | . . . 4 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
22 | 19, 21 | bitri 183 | . . 3 ⊢ ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2)) |
23 | 17, 22 | mpbir 145 | . 2 ⊢ (3 / 2) < (1 + 1) |
24 | btwnnz 9285 | . 2 ⊢ ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ) | |
25 | 1, 13, 23, 24 | mp3an 1327 | 1 ⊢ ¬ (3 / 2) ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 < clt 7933 / cdiv 8568 2c2 8908 3c3 8909 4c4 8910 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 |
This theorem is referenced by: nn0o1gt2 11842 |
Copyright terms: Public domain | W3C validator |