ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3halfnz GIF version

Theorem 3halfnz 9426
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
3halfnz ¬ (3 / 2) ∈ ℤ

Proof of Theorem 3halfnz
StepHypRef Expression
1 1z 9355 . 2 1 ∈ ℤ
2 2cn 9064 . . . . 5 2 ∈ ℂ
32mullidi 8032 . . . 4 (1 · 2) = 2
4 2lt3 9164 . . . 4 2 < 3
53, 4eqbrtri 4055 . . 3 (1 · 2) < 3
6 1re 8028 . . . 4 1 ∈ ℝ
7 3re 9067 . . . 4 3 ∈ ℝ
8 2re 9063 . . . . 5 2 ∈ ℝ
9 2pos 9084 . . . . 5 0 < 2
108, 9pm3.2i 272 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
11 ltmuldiv 8904 . . . 4 ((1 ∈ ℝ ∧ 3 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
126, 7, 10, 11mp3an 1348 . . 3 ((1 · 2) < 3 ↔ 1 < (3 / 2))
135, 12mpbi 145 . 2 1 < (3 / 2)
14 3lt4 9166 . . . 4 3 < 4
15 2t2e4 9148 . . . . 5 (2 · 2) = 4
1615breq2i 4042 . . . 4 (3 < (2 · 2) ↔ 3 < 4)
1714, 16mpbir 146 . . 3 3 < (2 · 2)
18 1p1e2 9110 . . . . 5 (1 + 1) = 2
1918breq2i 4042 . . . 4 ((3 / 2) < (1 + 1) ↔ (3 / 2) < 2)
20 ltdivmul 8906 . . . . 5 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
217, 8, 10, 20mp3an 1348 . . . 4 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2219, 21bitri 184 . . 3 ((3 / 2) < (1 + 1) ↔ 3 < (2 · 2))
2317, 22mpbir 146 . 2 (3 / 2) < (1 + 1)
24 btwnnz 9423 . 2 ((1 ∈ ℤ ∧ 1 < (3 / 2) ∧ (3 / 2) < (1 + 1)) → ¬ (3 / 2) ∈ ℤ)
251, 13, 23, 24mp3an 1348 1 ¬ (3 / 2) ∈ ℤ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wcel 2167   class class class wbr 4034  (class class class)co 5923  cr 7881  0cc0 7882  1c1 7883   + caddc 7885   · cmul 7887   < clt 8064   / cdiv 8702  2c2 9044  3c3 9045  4c4 9046  cz 9329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330
This theorem is referenced by:  nn0o1gt2  12073
  Copyright terms: Public domain W3C validator