Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8t3e24 | GIF version |
Description: 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8t3e24 | ⊢ (8 · 3) = ;24 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 9172 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 2nn0 9166 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 8952 | . 2 ⊢ 3 = (2 + 1) | |
4 | 8t2e16 9471 | . 2 ⊢ (8 · 2) = ;16 | |
5 | 1nn0 9165 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 6nn0 9170 | . . 3 ⊢ 6 ∈ ℕ0 | |
7 | eqid 2175 | . . 3 ⊢ ;16 = ;16 | |
8 | 1p1e2 9009 | . . 3 ⊢ (1 + 1) = 2 | |
9 | 4nn0 9168 | . . 3 ⊢ 4 ∈ ℕ0 | |
10 | 1 | nn0cni 9161 | . . . 4 ⊢ 8 ∈ ℂ |
11 | 6 | nn0cni 9161 | . . . 4 ⊢ 6 ∈ ℂ |
12 | 8p6e14 9440 | . . . 4 ⊢ (8 + 6) = ;14 | |
13 | 10, 11, 12 | addcomli 8076 | . . 3 ⊢ (6 + 8) = ;14 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9417 | . 2 ⊢ (;16 + 8) = ;24 |
15 | 1, 2, 3, 4, 14 | 4t3lem 9453 | 1 ⊢ (8 · 3) = ;24 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 1c1 7787 · cmul 7791 2c2 8943 3c3 8944 4c4 8945 6c6 8947 8c8 8949 ;cdc 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-n0 9150 df-dec 9358 |
This theorem is referenced by: 8t4e32 9473 |
Copyright terms: Public domain | W3C validator |