| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2m1e1 | GIF version | ||
| Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9244. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 2m1e1 | ⊢ (2 − 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9169 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8080 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 1p1e2 9215 | . 2 ⊢ (1 + 1) = 2 | |
| 4 | 1, 2, 2, 3 | subaddrii 8423 | 1 ⊢ (2 − 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 5994 1c1 7988 − cmin 8305 2c2 9149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 df-2 9157 |
| This theorem is referenced by: 1e2m1 9217 1mhlfehlf 9317 subhalfhalf 9334 addltmul 9336 xp1d2m1eqxm1d2 9352 nn0lt2 9516 nn0le2is012 9517 zeo 9540 fzo0to2pr 10411 bcn2 10973 maxabslemlub 11704 geo2sum2 12012 ege2le3 12168 cos2tsin 12248 cos12dec 12265 odd2np1 12370 oddp1even 12373 mod2eq1n2dvds 12376 oddge22np1 12378 prmdiv 12743 hoverb 15307 sin0pilem1 15440 cos2pi 15463 cosq34lt1 15509 lgslem4 15667 gausslemma2dlem1a 15722 lgseisenlem1 15734 2lgslem3c 15759 ex-fl 16019 |
| Copyright terms: Public domain | W3C validator |