| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2m1e1 | GIF version | ||
| Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9195. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 2m1e1 | ⊢ (2 − 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9120 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 8031 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 1p1e2 9166 | . 2 ⊢ (1 + 1) = 2 | |
| 4 | 1, 2, 2, 3 | subaddrii 8374 | 1 ⊢ (2 − 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5954 1c1 7939 − cmin 8256 2c2 9100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sub 8258 df-2 9108 |
| This theorem is referenced by: 1e2m1 9168 1mhlfehlf 9268 subhalfhalf 9285 addltmul 9287 xp1d2m1eqxm1d2 9303 nn0lt2 9467 nn0le2is012 9468 zeo 9491 fzo0to2pr 10360 bcn2 10922 maxabslemlub 11568 geo2sum2 11876 ege2le3 12032 cos2tsin 12112 cos12dec 12129 odd2np1 12234 oddp1even 12237 mod2eq1n2dvds 12240 oddge22np1 12242 prmdiv 12607 hoverb 15170 sin0pilem1 15303 cos2pi 15326 cosq34lt1 15372 lgslem4 15530 gausslemma2dlem1a 15585 lgseisenlem1 15597 2lgslem3c 15622 ex-fl 15775 |
| Copyright terms: Public domain | W3C validator |