| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2m1e1 | GIF version | ||
| Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9139. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 2m1e1 | ⊢ (2 − 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9064 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 7975 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | 1p1e2 9110 | . 2 ⊢ (1 + 1) = 2 | |
| 4 | 1, 2, 2, 3 | subaddrii 8318 | 1 ⊢ (2 − 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5923 1c1 7883 − cmin 8200 2c2 9044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-distr 7986 ax-i2m1 7987 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-sub 8202 df-2 9052 |
| This theorem is referenced by: 1e2m1 9112 1mhlfehlf 9212 subhalfhalf 9229 addltmul 9231 xp1d2m1eqxm1d2 9247 nn0lt2 9410 nn0le2is012 9411 zeo 9434 fzo0to2pr 10297 bcn2 10859 maxabslemlub 11375 geo2sum2 11683 ege2le3 11839 cos2tsin 11919 cos12dec 11936 odd2np1 12041 oddp1even 12044 mod2eq1n2dvds 12047 oddge22np1 12049 prmdiv 12414 hoverb 14910 sin0pilem1 15043 cos2pi 15066 cosq34lt1 15112 lgslem4 15270 gausslemma2dlem1a 15325 lgseisenlem1 15337 2lgslem3c 15362 ex-fl 15397 |
| Copyright terms: Public domain | W3C validator |