![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2m1e1 | GIF version |
Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9130. (Contributed by David A. Wheeler, 4-Jan-2017.) |
Ref | Expression |
---|---|
2m1e1 | ⊢ (2 − 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9055 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
3 | 1p1e2 9101 | . 2 ⊢ (1 + 1) = 2 | |
4 | 1, 2, 2, 3 | subaddrii 8310 | 1 ⊢ (2 − 1) = 1 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 − cmin 8192 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-2 9043 |
This theorem is referenced by: 1e2m1 9103 1mhlfehlf 9203 subhalfhalf 9220 addltmul 9222 xp1d2m1eqxm1d2 9238 nn0lt2 9401 nn0le2is012 9402 zeo 9425 fzo0to2pr 10288 bcn2 10838 maxabslemlub 11354 geo2sum2 11661 ege2le3 11817 cos2tsin 11897 cos12dec 11914 odd2np1 12017 oddp1even 12020 mod2eq1n2dvds 12023 oddge22np1 12025 prmdiv 12376 hoverb 14827 sin0pilem1 14957 cos2pi 14980 cosq34lt1 15026 lgslem4 15160 gausslemma2dlem1a 15215 lgseisenlem1 15227 2lgslem3c 15252 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |