Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > logbleb | GIF version |
Description: The general logarithm function is monotone/increasing. See logleb 13436. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.) |
Ref | Expression |
---|---|
logbleb | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑋 ∈ ℝ+) | |
2 | 1 | relogcld 13443 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑋) ∈ ℝ) |
3 | simp3 989 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝑌 ∈ ℝ+) | |
4 | 3 | relogcld 13443 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝑌) ∈ ℝ) |
5 | eluzelre 9476 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℝ) | |
6 | 5 | 3ad2ant1 1008 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ ℝ) |
7 | 1z 9217 | . . . . 5 ⊢ 1 ∈ ℤ | |
8 | simp1 987 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘2)) | |
9 | 1p1e2 8974 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
10 | 9 | fveq2i 5489 | . . . . . 6 ⊢ (ℤ≥‘(1 + 1)) = (ℤ≥‘2) |
11 | 8, 10 | eleqtrrdi 2260 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 𝐵 ∈ (ℤ≥‘(1 + 1))) |
12 | eluzp1l 9490 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(1 + 1))) → 1 < 𝐵) | |
13 | 7, 11, 12 | sylancr 411 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → 1 < 𝐵) |
14 | 6, 13 | rplogcld 13449 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (log‘𝐵) ∈ ℝ+) |
15 | 2, 4, 14 | lediv1d 9679 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((log‘𝑋) ≤ (log‘𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) ≤ ((log‘𝑌) / (log‘𝐵)))) |
16 | logleb 13436 | . . 3 ⊢ ((𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (log‘𝑋) ≤ (log‘𝑌))) | |
17 | 16 | 3adant1 1005 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (log‘𝑋) ≤ (log‘𝑌))) |
18 | relogbval 13509 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
19 | 18 | 3adant3 1007 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
20 | relogbval 13509 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) | |
21 | 20 | 3adant2 1006 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝐵 logb 𝑌) = ((log‘𝑌) / (log‘𝐵))) |
22 | 19, 21 | breq12d 3995 | . 2 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → ((𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌) ↔ ((log‘𝑋) / (log‘𝐵)) ≤ ((log‘𝑌) / (log‘𝐵)))) |
23 | 15, 17, 22 | 3bitr4d 219 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 / cdiv 8568 2c2 8908 ℤcz 9191 ℤ≥cuz 9466 ℝ+crp 9589 logclog 13417 logb clogb 13501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ioo 9828 df-ico 9830 df-icc 9831 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-e 11590 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 df-relog 13419 df-logb 13502 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |