![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t3e27 | GIF version |
Description: 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t3e27 | ⊢ (9 · 3) = ;27 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 9214 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 2nn0 9207 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 8993 | . 2 ⊢ 3 = (2 + 1) | |
4 | 9t2e18 9519 | . 2 ⊢ (9 · 2) = ;18 | |
5 | 1nn0 9206 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 8nn0 9213 | . . 3 ⊢ 8 ∈ ℕ0 | |
7 | eqid 2187 | . . 3 ⊢ ;18 = ;18 | |
8 | 1p1e2 9050 | . . 3 ⊢ (1 + 1) = 2 | |
9 | 7nn0 9212 | . . 3 ⊢ 7 ∈ ℕ0 | |
10 | 1 | nn0cni 9202 | . . . 4 ⊢ 9 ∈ ℂ |
11 | 6 | nn0cni 9202 | . . . 4 ⊢ 8 ∈ ℂ |
12 | 9p8e17 9490 | . . . 4 ⊢ (9 + 8) = ;17 | |
13 | 10, 11, 12 | addcomli 8116 | . . 3 ⊢ (8 + 9) = ;17 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9458 | . 2 ⊢ (;18 + 9) = ;27 |
15 | 1, 2, 3, 4, 14 | 4t3lem 9494 | 1 ⊢ (9 · 3) = ;27 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 (class class class)co 5888 1c1 7826 · cmul 7830 2c2 8984 3c3 8985 7c7 8989 8c8 8990 9c9 8991 ;cdc 9398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8144 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-dec 9399 |
This theorem is referenced by: 9t4e36 9521 |
Copyright terms: Public domain | W3C validator |