| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t3e27 | GIF version | ||
| Description: 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9t3e27 | ⊢ (9 · 3) = ;27 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 9319 | . 2 ⊢ 9 ∈ ℕ0 | |
| 2 | 2nn0 9312 | . 2 ⊢ 2 ∈ ℕ0 | |
| 3 | df-3 9096 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 9t2e18 9625 | . 2 ⊢ (9 · 2) = ;18 | |
| 5 | 1nn0 9311 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 8nn0 9318 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 7 | eqid 2205 | . . 3 ⊢ ;18 = ;18 | |
| 8 | 1p1e2 9153 | . . 3 ⊢ (1 + 1) = 2 | |
| 9 | 7nn0 9317 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 10 | 1 | nn0cni 9307 | . . . 4 ⊢ 9 ∈ ℂ |
| 11 | 6 | nn0cni 9307 | . . . 4 ⊢ 8 ∈ ℂ |
| 12 | 9p8e17 9596 | . . . 4 ⊢ (9 + 8) = ;17 | |
| 13 | 10, 11, 12 | addcomli 8217 | . . 3 ⊢ (8 + 9) = ;17 |
| 14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9564 | . 2 ⊢ (;18 + 9) = ;27 |
| 15 | 1, 2, 3, 4, 14 | 4t3lem 9600 | 1 ⊢ (9 · 3) = ;27 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 1c1 7926 · cmul 7930 2c2 9087 3c3 9088 7c7 9092 8c8 9093 9c9 9094 ;cdc 9504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-dec 9505 |
| This theorem is referenced by: 9t4e36 9627 3exp3 12761 |
| Copyright terms: Public domain | W3C validator |