Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sub1m1 | GIF version |
Description: Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.) |
Ref | Expression |
---|---|
sub1m1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
2 | 1cnd 7907 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2, 2 | subsub4d 8232 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
4 | 1p1e2 8966 | . . . 4 ⊢ (1 + 1) = 2 | |
5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
6 | 5 | oveq2d 5853 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 − (1 + 1)) = (𝑁 − 2)) |
7 | 3, 6 | eqtrd 2197 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 (class class class)co 5837 ℂcc 7743 1c1 7746 + caddc 7748 − cmin 8061 2c2 8900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-setind 4509 ax-resscn 7837 ax-1cn 7838 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-iota 5148 df-fun 5185 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-sub 8063 df-2 8908 |
This theorem is referenced by: hashdifpr 10723 |
Copyright terms: Public domain | W3C validator |