| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sub1m1 | GIF version | ||
| Description: Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.) |
| Ref | Expression |
|---|---|
| sub1m1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8087 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2, 2 | subsub4d 8413 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
| 4 | 1p1e2 9152 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
| 6 | 5 | oveq2d 5959 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 − (1 + 1)) = (𝑁 − 2)) |
| 7 | 3, 6 | eqtrd 2237 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 1c1 7925 + caddc 7927 − cmin 8242 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-2 9094 |
| This theorem is referenced by: hashdifpr 10963 |
| Copyright terms: Public domain | W3C validator |