ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmlem GIF version

Theorem xpmlem 4967
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
Assertion
Ref Expression
xpmlem ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem xpmlem
StepHypRef Expression
1 eeanv 1905 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
2 vex 2692 . . . . . 6 𝑥 ∈ V
3 vex 2692 . . . . . 6 𝑦 ∈ V
42, 3opex 4159 . . . . 5 𝑥, 𝑦⟩ ∈ V
5 eleq1 2203 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 opelxp 4577 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
75, 6syl6bb 195 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
84, 7spcev 2784 . . . 4 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
98exlimivv 1869 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
101, 9sylbir 134 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 elxp 4564 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
12 simpr 109 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐴𝑦𝐵))
13122eximi 1581 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1411, 13sylbi 120 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1514exlimiv 1578 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1615, 1sylib 121 . 2 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
1710, 16impbii 125 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  cop 3535   × cxp 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-opab 3998  df-xp 4553
This theorem is referenced by:  xpm  4968
  Copyright terms: Public domain W3C validator