ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmlem GIF version

Theorem xpmlem 5148
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
Assertion
Ref Expression
xpmlem ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem xpmlem
StepHypRef Expression
1 eeanv 1983 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
2 vex 2802 . . . . . 6 𝑥 ∈ V
3 vex 2802 . . . . . 6 𝑦 ∈ V
42, 3opex 4314 . . . . 5 𝑥, 𝑦⟩ ∈ V
5 eleq1 2292 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 opelxp 4748 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
75, 6bitrdi 196 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
84, 7spcev 2898 . . . 4 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
98exlimivv 1943 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
101, 9sylbir 135 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 elxp 4735 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
12 simpr 110 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐴𝑦𝐵))
13122eximi 1647 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1411, 13sylbi 121 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1514exlimiv 1644 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1615, 1sylib 122 . 2 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
1710, 16impbii 126 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  cop 3669   × cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4145  df-xp 4724
This theorem is referenced by:  xpm  5149
  Copyright terms: Public domain W3C validator