ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmlem GIF version

Theorem xpmlem 5112
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
Assertion
Ref Expression
xpmlem ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem xpmlem
StepHypRef Expression
1 eeanv 1961 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) ↔ (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
2 vex 2776 . . . . . 6 𝑥 ∈ V
3 vex 2776 . . . . . 6 𝑦 ∈ V
42, 3opex 4281 . . . . 5 𝑥, 𝑦⟩ ∈ V
5 eleq1 2269 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
6 opelxp 4713 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
75, 6bitrdi 196 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
84, 7spcev 2872 . . . 4 ((𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
98exlimivv 1921 . . 3 (∃𝑥𝑦(𝑥𝐴𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
101, 9sylbir 135 . 2 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) → ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
11 elxp 4700 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
12 simpr 110 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐴𝑦𝐵))
13122eximi 1625 . . . . 5 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1411, 13sylbi 121 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1514exlimiv 1622 . . 3 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → ∃𝑥𝑦(𝑥𝐴𝑦𝐵))
1615, 1sylib 122 . 2 (∃𝑧 𝑧 ∈ (𝐴 × 𝐵) → (∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵))
1710, 16impbii 126 1 ((∃𝑥 𝑥𝐴 ∧ ∃𝑦 𝑦𝐵) ↔ ∃𝑧 𝑧 ∈ (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  cop 3641   × cxp 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114  df-xp 4689
This theorem is referenced by:  xpm  5113
  Copyright terms: Public domain W3C validator