ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunin1 GIF version

Theorem iunin1 3946
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3935 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 3945 . 2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
2 incom 3325 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 9 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iuneq2i 3900 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 3325 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4i 2206 1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  cin 3126   ciun 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-iun 3884
This theorem is referenced by:  2iunin  3948  tgrest  13238
  Copyright terms: Public domain W3C validator