ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 GIF version

Theorem fseq1m1p1 10287
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1 𝐻 = {⟨𝑁, 𝐵⟩}
Assertion
Ref Expression
fseq1m1p1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 9406 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 eqid 2229 . . . 4 {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨((𝑁 − 1) + 1), 𝐵⟩}
32fseq1p1m1 10286 . . 3 ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
41, 3syl 14 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
5 nncn 9114 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6 ax-1cn 8088 . . . . . . . . 9 1 ∈ ℂ
7 npcan 8351 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
85, 6, 7sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
98opeq1d 3862 . . . . . . 7 (𝑁 ∈ ℕ → ⟨((𝑁 − 1) + 1), 𝐵⟩ = ⟨𝑁, 𝐵⟩)
109sneqd 3679 . . . . . 6 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨𝑁, 𝐵⟩})
11 fseq1m1p1.1 . . . . . 6 𝐻 = {⟨𝑁, 𝐵⟩}
1210, 11eqtr4di 2280 . . . . 5 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = 𝐻)
1312uneq2d 3358 . . . 4 (𝑁 ∈ ℕ → (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) = (𝐹𝐻))
1413eqeq2d 2241 . . 3 (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) ↔ 𝐺 = (𝐹𝐻)))
15143anbi3d 1352 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))))
168oveq2d 6016 . . . 4 (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
1716feq2d 5460 . . 3 (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴𝐺:(1...𝑁)⟶𝐴))
188fveq2d 5630 . . . 4 (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺𝑁))
1918eqeq1d 2238 . . 3 (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺𝑁) = 𝐵))
2017, 193anbi12d 1347 . 2 (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
214, 15, 203bitr3d 218 1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  cun 3195  {csn 3666  cop 3669  cres 4720  wf 5313  cfv 5317  (class class class)co 6000  cc 7993  1c1 7996   + caddc 7998  cmin 8313  cn 9106  0cn0 9365  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator