ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 GIF version

Theorem fseq1m1p1 10051
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1 𝐻 = {⟨𝑁, 𝐵⟩}
Assertion
Ref Expression
fseq1m1p1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 9176 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 eqid 2170 . . . 4 {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨((𝑁 − 1) + 1), 𝐵⟩}
32fseq1p1m1 10050 . . 3 ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
41, 3syl 14 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
5 nncn 8886 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6 ax-1cn 7867 . . . . . . . . 9 1 ∈ ℂ
7 npcan 8128 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
85, 6, 7sylancl 411 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
98opeq1d 3771 . . . . . . 7 (𝑁 ∈ ℕ → ⟨((𝑁 − 1) + 1), 𝐵⟩ = ⟨𝑁, 𝐵⟩)
109sneqd 3596 . . . . . 6 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨𝑁, 𝐵⟩})
11 fseq1m1p1.1 . . . . . 6 𝐻 = {⟨𝑁, 𝐵⟩}
1210, 11eqtr4di 2221 . . . . 5 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = 𝐻)
1312uneq2d 3281 . . . 4 (𝑁 ∈ ℕ → (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) = (𝐹𝐻))
1413eqeq2d 2182 . . 3 (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) ↔ 𝐺 = (𝐹𝐻)))
15143anbi3d 1313 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))))
168oveq2d 5869 . . . 4 (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
1716feq2d 5335 . . 3 (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴𝐺:(1...𝑁)⟶𝐴))
188fveq2d 5500 . . . 4 (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺𝑁))
1918eqeq1d 2179 . . 3 (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺𝑁) = 𝐵))
2017, 193anbi12d 1308 . 2 (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
214, 15, 203bitr3d 217 1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141  cun 3119  {csn 3583  cop 3586  cres 4613  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  1c1 7775   + caddc 7777  cmin 8090  cn 8878  0cn0 9135  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator