| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fseq1m1p1 | GIF version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| fseq1m1p1.1 | ⊢ 𝐻 = {〈𝑁, 𝐵〉} |
| Ref | Expression |
|---|---|
| fseq1m1p1 | ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 9336 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 2 | eqid 2205 | . . . 4 ⊢ {〈((𝑁 − 1) + 1), 𝐵〉} = {〈((𝑁 − 1) + 1), 𝐵〉} | |
| 3 | 2 | fseq1p1m1 10216 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 5 | nncn 9044 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 6 | ax-1cn 8018 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 7 | npcan 8281 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 8 | 5, 6, 7 | sylancl 413 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 9 | 8 | opeq1d 3825 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 〈((𝑁 − 1) + 1), 𝐵〉 = 〈𝑁, 𝐵〉) |
| 10 | 9 | sneqd 3646 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = {〈𝑁, 𝐵〉}) |
| 11 | fseq1m1p1.1 | . . . . . 6 ⊢ 𝐻 = {〈𝑁, 𝐵〉} | |
| 12 | 10, 11 | eqtr4di 2256 | . . . . 5 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = 𝐻) |
| 13 | 12 | uneq2d 3327 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) = (𝐹 ∪ 𝐻)) |
| 14 | 13 | eqeq2d 2217 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) ↔ 𝐺 = (𝐹 ∪ 𝐻))) |
| 15 | 14 | 3anbi3d 1331 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)))) |
| 16 | 8 | oveq2d 5960 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 17 | 16 | feq2d 5413 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ↔ 𝐺:(1...𝑁)⟶𝐴)) |
| 18 | 8 | fveq2d 5580 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺‘𝑁)) |
| 19 | 18 | eqeq1d 2214 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺‘𝑁) = 𝐵)) |
| 20 | 17, 19 | 3anbi12d 1326 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 21 | 4, 15, 20 | 3bitr3d 218 | 1 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ∪ cun 3164 {csn 3633 〈cop 3636 ↾ cres 4677 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 1c1 7926 + caddc 7928 − cmin 8243 ℕcn 9036 ℕ0cn0 9295 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |