Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fseq1m1p1 | GIF version |
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
fseq1m1p1.1 | ⊢ 𝐻 = {〈𝑁, 𝐵〉} |
Ref | Expression |
---|---|
fseq1m1p1 | ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 9176 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
2 | eqid 2170 | . . . 4 ⊢ {〈((𝑁 − 1) + 1), 𝐵〉} = {〈((𝑁 − 1) + 1), 𝐵〉} | |
3 | 2 | fseq1p1m1 10050 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
4 | 1, 3 | syl 14 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
5 | nncn 8886 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
6 | ax-1cn 7867 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
7 | npcan 8128 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
8 | 5, 6, 7 | sylancl 411 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | opeq1d 3771 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 〈((𝑁 − 1) + 1), 𝐵〉 = 〈𝑁, 𝐵〉) |
10 | 9 | sneqd 3596 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = {〈𝑁, 𝐵〉}) |
11 | fseq1m1p1.1 | . . . . . 6 ⊢ 𝐻 = {〈𝑁, 𝐵〉} | |
12 | 10, 11 | eqtr4di 2221 | . . . . 5 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = 𝐻) |
13 | 12 | uneq2d 3281 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) = (𝐹 ∪ 𝐻)) |
14 | 13 | eqeq2d 2182 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) ↔ 𝐺 = (𝐹 ∪ 𝐻))) |
15 | 14 | 3anbi3d 1313 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)))) |
16 | 8 | oveq2d 5869 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
17 | 16 | feq2d 5335 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ↔ 𝐺:(1...𝑁)⟶𝐴)) |
18 | 8 | fveq2d 5500 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺‘𝑁)) |
19 | 18 | eqeq1d 2179 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺‘𝑁) = 𝐵)) |
20 | 17, 19 | 3anbi12d 1308 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
21 | 4, 15, 20 | 3bitr3d 217 | 1 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 〈cop 3586 ↾ cres 4613 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 1c1 7775 + caddc 7777 − cmin 8090 ℕcn 8878 ℕ0cn0 9135 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |