Step | Hyp | Ref
| Expression |
1 | | snexg 4179 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → {𝑍} ∈ V) |
2 | | opexg 4222 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → 〈𝑍, 𝑍〉 ∈ V) |
3 | 2 | anidms 397 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 〈𝑍, 𝑍〉 ∈ V) |
4 | | opexg 4222 |
. . . . . . . . . 10
⊢
((〈𝑍, 𝑍〉 ∈ V ∧ 𝑍 ∈ 𝑉) → 〈〈𝑍, 𝑍〉, 𝑍〉 ∈ V) |
5 | 3, 4 | mpancom 422 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → 〈〈𝑍, 𝑍〉, 𝑍〉 ∈ V) |
6 | | snexg 4179 |
. . . . . . . . 9
⊢
(〈〈𝑍,
𝑍〉, 𝑍〉 ∈ V → {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) |
7 | 5, 6 | syl 14 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) |
8 | | ring1.m |
. . . . . . . . 9
⊢ 𝑀 = {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
9 | 8 | rngbaseg 12545 |
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {𝑍} = (Base‘𝑀)) |
10 | 1, 7, 7, 9 | syl3anc 1238 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) |
11 | 10 | opeq2d 3781 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → 〈(Base‘ndx), {𝑍}〉 =
〈(Base‘ndx), (Base‘𝑀)〉) |
12 | 8 | rngplusgg 12546 |
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} = (+g‘𝑀)) |
13 | 1, 7, 7, 12 | syl3anc 1238 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} = (+g‘𝑀)) |
14 | 13 | opeq2d 3781 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 =
〈(+g‘ndx), (+g‘𝑀)〉) |
15 | 11, 14 | preq12d 3674 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} = {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉}) |
16 | | eqid 2175 |
. . . . . 6
⊢
{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉} = {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} |
17 | 16 | grp1 12835 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Grp) |
18 | 15, 17 | eqeltrrd 2253 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} ∈ Grp) |
19 | | basendxnn 12482 |
. . . . . . . 8
⊢
(Base‘ndx) ∈ ℕ |
20 | | opexg 4222 |
. . . . . . . 8
⊢
(((Base‘ndx) ∈ ℕ ∧ {𝑍} ∈ V) → 〈(Base‘ndx),
{𝑍}〉 ∈
V) |
21 | 19, 1, 20 | sylancr 414 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(Base‘ndx), {𝑍}〉 ∈
V) |
22 | | plusgslid 12524 |
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
23 | 22 | simpri 113 |
. . . . . . . 8
⊢
(+g‘ndx) ∈ ℕ |
24 | | opexg 4222 |
. . . . . . . 8
⊢
(((+g‘ndx) ∈ ℕ ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) →
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) |
25 | 23, 7, 24 | sylancr 414 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) |
26 | | mulrslid 12541 |
. . . . . . . . 9
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
27 | 26 | simpri 113 |
. . . . . . . 8
⊢
(.r‘ndx) ∈ ℕ |
28 | | opexg 4222 |
. . . . . . . 8
⊢
(((.r‘ndx) ∈ ℕ ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) →
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) |
29 | 27, 7, 28 | sylancr 414 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(.r‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) |
30 | | tpexg 4438 |
. . . . . . 7
⊢
((〈(Base‘ndx), {𝑍}〉 ∈ V ∧
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V ∧
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) →
{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V) |
31 | 21, 25, 29, 30 | syl3anc 1238 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V) |
32 | 8, 31 | eqeltrid 2262 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ V) |
33 | | eqid 2175 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
34 | | eqid 2175 |
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) |
35 | | eqid 2175 |
. . . . . 6
⊢
{〈(Base‘ndx), (Base‘𝑀)〉, 〈(+g‘ndx),
(+g‘𝑀)〉} = {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} |
36 | 33, 34, 35 | grppropstrg 12755 |
. . . . 5
⊢ (𝑀 ∈ V → (𝑀 ∈ Grp ↔
{〈(Base‘ndx), (Base‘𝑀)〉, 〈(+g‘ndx),
(+g‘𝑀)〉} ∈ Grp)) |
37 | 32, 36 | syl 14 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Grp ↔ {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} ∈ Grp)) |
38 | 18, 37 | mpbird 167 |
. . 3
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Grp) |
39 | 16 | mnd1 12708 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Mnd) |
40 | | eqidd 2176 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (Base‘(mulGrp‘𝑀)) =
(Base‘(mulGrp‘𝑀))) |
41 | 16 | grpbaseg 12537 |
. . . . . . 7
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {𝑍} = (Base‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
42 | 1, 7, 41 | syl2anc 411 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
43 | | eqid 2175 |
. . . . . . . 8
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) |
44 | 43, 33 | mgpbasg 12930 |
. . . . . . 7
⊢ (𝑀 ∈ V →
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀))) |
45 | 32, 44 | syl 14 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = (Base‘(mulGrp‘𝑀))) |
46 | 10, 42, 45 | 3eqtr3rd 2217 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (Base‘(mulGrp‘𝑀)) =
(Base‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
47 | 8 | rngmulrg 12547 |
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} = (.r‘𝑀)) |
48 | 1, 7, 7, 47 | syl3anc 1238 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} = (.r‘𝑀)) |
49 | 16 | grpplusgg 12538 |
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
50 | 1, 7, 49 | syl2anc 411 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
51 | | eqid 2175 |
. . . . . . . . 9
⊢
(.r‘𝑀) = (.r‘𝑀) |
52 | 43, 51 | mgpplusgg 12929 |
. . . . . . . 8
⊢ (𝑀 ∈ V →
(.r‘𝑀) =
(+g‘(mulGrp‘𝑀))) |
53 | 32, 52 | syl 14 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → (.r‘𝑀) =
(+g‘(mulGrp‘𝑀))) |
54 | 48, 50, 53 | 3eqtr3rd 2217 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 →
(+g‘(mulGrp‘𝑀)) =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) |
55 | 54 | oveqdr 5893 |
. . . . 5
⊢ ((𝑍 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑀)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑀)))) → (𝑥(+g‘(mulGrp‘𝑀))𝑦) = (𝑥(+g‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})𝑦)) |
56 | 40, 46, 55 | mndpropd 12705 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → ((mulGrp‘𝑀) ∈ Mnd ↔ {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Mnd)) |
57 | 39, 56 | mpbird 167 |
. . 3
⊢ (𝑍 ∈ 𝑉 → (mulGrp‘𝑀) ∈ Mnd) |
58 | | df-ov 5868 |
. . . . . . 7
⊢ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) |
59 | | fvsng 5704 |
. . . . . . . 8
⊢
((〈𝑍, 𝑍〉 ∈ V ∧ 𝑍 ∈ 𝑉) → ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) = 𝑍) |
60 | 3, 59 | mpancom 422 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) = 𝑍) |
61 | 58, 60 | eqtrid 2220 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = 𝑍) |
62 | 61 | oveq2d 5881 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
63 | 61, 61 | oveq12d 5883 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
64 | 62, 63 | eqtr4d 2211 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) |
65 | 61 | oveq1d 5880 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
66 | 65, 63 | eqtr4d 2211 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) |
67 | | oveq1 5872 |
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
68 | | oveq1 5872 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏)) |
69 | | oveq1 5872 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) |
70 | 68, 69 | oveq12d 5883 |
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
71 | 67, 70 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) |
72 | 68 | oveq1d 5880 |
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) |
73 | 69 | oveq1d 5880 |
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
74 | 72, 73 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑎 = 𝑍 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) |
75 | 71, 74 | anbi12d 473 |
. . . . . . 7
⊢ (𝑎 = 𝑍 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
76 | 75 | 2ralbidv 2499 |
. . . . . 6
⊢ (𝑎 = 𝑍 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
77 | 76 | ralsng 3629 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
78 | | oveq1 5872 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑍 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) |
79 | 78 | oveq2d 5881 |
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
80 | | oveq2 5873 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
81 | 80 | oveq1d 5880 |
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
82 | 79, 81 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) |
83 | 80 | oveq1d 5880 |
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) |
84 | 78 | oveq2d 5881 |
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) |
85 | 83, 84 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑏 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) |
86 | 82, 85 | anbi12d 473 |
. . . . . . 7
⊢ (𝑏 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
87 | 86 | ralbidv 2475 |
. . . . . 6
⊢ (𝑏 = 𝑍 → (∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
88 | 87 | ralsng 3629 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
89 | | oveq2 5873 |
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
90 | 89 | oveq2d 5881 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) |
91 | 89 | oveq2d 5881 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) |
92 | 90, 91 | eqeq12d 2190 |
. . . . . . 7
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)))) |
93 | | oveq2 5873 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) |
94 | 89, 89 | oveq12d 5883 |
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) |
95 | 93, 94 | eqeq12d 2190 |
. . . . . . 7
⊢ (𝑐 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)))) |
96 | 92, 95 | anbi12d 473 |
. . . . . 6
⊢ (𝑐 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) |
97 | 96 | ralsng 3629 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) |
98 | 77, 88, 97 | 3bitrd 214 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) |
99 | 64, 66, 98 | mpbir2and 944 |
. . 3
⊢ (𝑍 ∈ 𝑉 → ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) |
100 | 38, 57, 99 | 3jca 1177 |
. 2
⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) |
101 | | eqidd 2176 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 𝑎 = 𝑎) |
102 | 13 | oveqd 5882 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑏(+g‘𝑀)𝑐)) |
103 | 48, 101, 102 | oveq123d 5886 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐))) |
104 | 48 | oveqd 5882 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑎(.r‘𝑀)𝑏)) |
105 | 48 | oveqd 5882 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑎(.r‘𝑀)𝑐)) |
106 | 13, 104, 105 | oveq123d 5886 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐))) |
107 | 103, 106 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)))) |
108 | 13 | oveqd 5882 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑎(+g‘𝑀)𝑏)) |
109 | | eqidd 2176 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 𝑐 = 𝑐) |
110 | 48, 108, 109 | oveq123d 5886 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐)) |
111 | 48 | oveqd 5882 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑏(.r‘𝑀)𝑐)) |
112 | 13, 105, 111 | oveq123d 5886 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))) |
113 | 110, 112 | eqeq12d 2190 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐)))) |
114 | 107, 113 | anbi12d 473 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) |
115 | 10, 114 | raleqbidv 2682 |
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) |
116 | 10, 115 | raleqbidv 2682 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) |
117 | 10, 116 | raleqbidv 2682 |
. . . 4
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) |
118 | 117 | 3anbi3d 1318 |
. . 3
⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) ↔ (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐)))))) |
119 | 33, 43, 34, 51 | isring 12976 |
. . 3
⊢ (𝑀 ∈ Ring ↔ (𝑀 ∈ Grp ∧
(mulGrp‘𝑀) ∈ Mnd
∧ ∀𝑎 ∈
(Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) |
120 | 118, 119 | bitr4di 198 |
. 2
⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) ↔ 𝑀 ∈ Ring)) |
121 | 100, 120 | mpbid 147 |
1
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |