| Step | Hyp | Ref
 | Expression | 
| 1 |   | snexg 4217 | 
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → {𝑍} ∈ V) | 
| 2 |   | opexg 4261 | 
. . . . . . . . . . 11
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → 〈𝑍, 𝑍〉 ∈ V) | 
| 3 | 2 | anidms 397 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 〈𝑍, 𝑍〉 ∈ V) | 
| 4 |   | opexg 4261 | 
. . . . . . . . . 10
⊢
((〈𝑍, 𝑍〉 ∈ V ∧ 𝑍 ∈ 𝑉) → 〈〈𝑍, 𝑍〉, 𝑍〉 ∈ V) | 
| 5 | 3, 4 | mpancom 422 | 
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → 〈〈𝑍, 𝑍〉, 𝑍〉 ∈ V) | 
| 6 |   | snexg 4217 | 
. . . . . . . . 9
⊢
(〈〈𝑍,
𝑍〉, 𝑍〉 ∈ V → {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) | 
| 7 | 5, 6 | syl 14 | 
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) | 
| 8 |   | ring1.m | 
. . . . . . . . 9
⊢ 𝑀 = {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | 
| 9 | 8 | rngbaseg 12813 | 
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {𝑍} = (Base‘𝑀)) | 
| 10 | 1, 7, 7, 9 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘𝑀)) | 
| 11 | 10 | opeq2d 3815 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → 〈(Base‘ndx), {𝑍}〉 =
〈(Base‘ndx), (Base‘𝑀)〉) | 
| 12 | 8 | rngplusgg 12814 | 
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} = (+g‘𝑀)) | 
| 13 | 1, 7, 7, 12 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} = (+g‘𝑀)) | 
| 14 | 13 | opeq2d 3815 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 =
〈(+g‘ndx), (+g‘𝑀)〉) | 
| 15 | 11, 14 | preq12d 3707 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} = {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉}) | 
| 16 |   | eqid 2196 | 
. . . . . 6
⊢
{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉} = {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} | 
| 17 | 16 | grp1 13238 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Grp) | 
| 18 | 15, 17 | eqeltrrd 2274 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} ∈ Grp) | 
| 19 |   | basendxnn 12734 | 
. . . . . . . 8
⊢
(Base‘ndx) ∈ ℕ | 
| 20 |   | opexg 4261 | 
. . . . . . . 8
⊢
(((Base‘ndx) ∈ ℕ ∧ {𝑍} ∈ V) → 〈(Base‘ndx),
{𝑍}〉 ∈
V) | 
| 21 | 19, 1, 20 | sylancr 414 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(Base‘ndx), {𝑍}〉 ∈
V) | 
| 22 |   | plusgslid 12790 | 
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 23 | 22 | simpri 113 | 
. . . . . . . 8
⊢
(+g‘ndx) ∈ ℕ | 
| 24 |   | opexg 4261 | 
. . . . . . . 8
⊢
(((+g‘ndx) ∈ ℕ ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) →
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) | 
| 25 | 23, 7, 24 | sylancr 414 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) | 
| 26 |   | mulrslid 12809 | 
. . . . . . . . 9
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) | 
| 27 | 26 | simpri 113 | 
. . . . . . . 8
⊢
(.r‘ndx) ∈ ℕ | 
| 28 |   | opexg 4261 | 
. . . . . . . 8
⊢
(((.r‘ndx) ∈ ℕ ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) →
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) | 
| 29 | 27, 7, 28 | sylancr 414 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → 〈(.r‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) | 
| 30 |   | tpexg 4479 | 
. . . . . . 7
⊢
((〈(Base‘ndx), {𝑍}〉 ∈ V ∧
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V ∧
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ V) →
{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V) | 
| 31 | 21, 25, 29, 30 | syl3anc 1249 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ V) | 
| 32 | 8, 31 | eqeltrid 2283 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ V) | 
| 33 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 34 |   | eqid 2196 | 
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 35 |   | eqid 2196 | 
. . . . . 6
⊢
{〈(Base‘ndx), (Base‘𝑀)〉, 〈(+g‘ndx),
(+g‘𝑀)〉} = {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} | 
| 36 | 33, 34, 35 | grppropstrg 13151 | 
. . . . 5
⊢ (𝑀 ∈ V → (𝑀 ∈ Grp ↔
{〈(Base‘ndx), (Base‘𝑀)〉, 〈(+g‘ndx),
(+g‘𝑀)〉} ∈ Grp)) | 
| 37 | 32, 36 | syl 14 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Grp ↔ {〈(Base‘ndx),
(Base‘𝑀)〉,
〈(+g‘ndx), (+g‘𝑀)〉} ∈ Grp)) | 
| 38 | 18, 37 | mpbird 167 | 
. . 3
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Grp) | 
| 39 | 16 | mnd1 13087 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Mnd) | 
| 40 |   | eqidd 2197 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (Base‘(mulGrp‘𝑀)) =
(Base‘(mulGrp‘𝑀))) | 
| 41 | 16 | grpbaseg 12804 | 
. . . . . . 7
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {𝑍} = (Base‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 42 | 1, 7, 41 | syl2anc 411 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → {𝑍} = (Base‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 43 |   | eqid 2196 | 
. . . . . . . 8
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) | 
| 44 | 43, 33 | mgpbasg 13482 | 
. . . . . . 7
⊢ (𝑀 ∈ V →
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀))) | 
| 45 | 32, 44 | syl 14 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (Base‘𝑀) = (Base‘(mulGrp‘𝑀))) | 
| 46 | 10, 42, 45 | 3eqtr3rd 2238 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (Base‘(mulGrp‘𝑀)) =
(Base‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 47 | 8 | rngmulrg 12815 | 
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V ∧ {〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} = (.r‘𝑀)) | 
| 48 | 1, 7, 7, 47 | syl3anc 1249 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} = (.r‘𝑀)) | 
| 49 | 16 | grpplusgg 12805 | 
. . . . . . . 8
⊢ (({𝑍} ∈ V ∧
{〈〈𝑍, 𝑍〉, 𝑍〉} ∈ V) → {〈〈𝑍, 𝑍〉, 𝑍〉} =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 50 | 1, 7, 49 | syl2anc 411 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → {〈〈𝑍, 𝑍〉, 𝑍〉} =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 51 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(.r‘𝑀) = (.r‘𝑀) | 
| 52 | 43, 51 | mgpplusgg 13480 | 
. . . . . . . 8
⊢ (𝑀 ∈ V →
(.r‘𝑀) =
(+g‘(mulGrp‘𝑀))) | 
| 53 | 32, 52 | syl 14 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → (.r‘𝑀) =
(+g‘(mulGrp‘𝑀))) | 
| 54 | 48, 50, 53 | 3eqtr3rd 2238 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 →
(+g‘(mulGrp‘𝑀)) =
(+g‘{〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx),
{〈〈𝑍, 𝑍〉, 𝑍〉}〉})) | 
| 55 | 54 | oveqdr 5950 | 
. . . . 5
⊢ ((𝑍 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑀)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑀)))) → (𝑥(+g‘(mulGrp‘𝑀))𝑦) = (𝑥(+g‘{〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉})𝑦)) | 
| 56 | 40, 46, 55 | mndpropd 13081 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → ((mulGrp‘𝑀) ∈ Mnd ↔ {〈(Base‘ndx),
{𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} ∈ Mnd)) | 
| 57 | 39, 56 | mpbird 167 | 
. . 3
⊢ (𝑍 ∈ 𝑉 → (mulGrp‘𝑀) ∈ Mnd) | 
| 58 |   | df-ov 5925 | 
. . . . . . 7
⊢ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) | 
| 59 |   | fvsng 5758 | 
. . . . . . . 8
⊢
((〈𝑍, 𝑍〉 ∈ V ∧ 𝑍 ∈ 𝑉) → ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) = 𝑍) | 
| 60 | 3, 59 | mpancom 422 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → ({〈〈𝑍, 𝑍〉, 𝑍〉}‘〈𝑍, 𝑍〉) = 𝑍) | 
| 61 | 58, 60 | eqtrid 2241 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = 𝑍) | 
| 62 | 61 | oveq2d 5938 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 63 | 61, 61 | oveq12d 5940 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 64 | 62, 63 | eqtr4d 2232 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) | 
| 65 | 61 | oveq1d 5937 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 66 | 65, 63 | eqtr4d 2232 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) | 
| 67 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 68 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏)) | 
| 69 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑍 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) | 
| 70 | 68, 69 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 71 | 67, 70 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) | 
| 72 | 68 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) | 
| 73 | 69 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑍 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 74 | 72, 73 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑎 = 𝑍 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) | 
| 75 | 71, 74 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑎 = 𝑍 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 76 | 75 | 2ralbidv 2521 | 
. . . . . 6
⊢ (𝑎 = 𝑍 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 77 | 76 | ralsng 3662 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 78 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑏 = 𝑍 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) | 
| 79 | 78 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 80 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑏 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 81 | 80 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 82 | 79, 81 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) | 
| 83 | 80 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) | 
| 84 | 78 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑏 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) | 
| 85 | 83, 84 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑏 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) | 
| 86 | 82, 85 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑏 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 87 | 86 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑏 = 𝑍 → (∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 88 | 87 | ralsng 3662 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 89 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑐 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 90 | 89 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝑐 = 𝑍 → (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) | 
| 91 | 89 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) | 
| 92 | 90, 91 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)))) | 
| 93 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) | 
| 94 | 89, 89 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑐 = 𝑍 → ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))) | 
| 95 | 93, 94 | eqeq12d 2211 | 
. . . . . . 7
⊢ (𝑐 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)))) | 
| 96 | 92, 95 | anbi12d 473 | 
. . . . . 6
⊢ (𝑐 = 𝑍 → (((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) | 
| 97 | 96 | ralsng 3662 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑐 ∈ {𝑍} ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) | 
| 98 | 77, 88, 97 | 3bitrd 214 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍)) ∧ ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉}𝑍) = ((𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑍{〈〈𝑍, 𝑍〉, 𝑍〉}𝑍))))) | 
| 99 | 64, 66, 98 | mpbir2and 946 | 
. . 3
⊢ (𝑍 ∈ 𝑉 → ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) | 
| 100 | 38, 57, 99 | 3jca 1179 | 
. 2
⊢ (𝑍 ∈ 𝑉 → (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))))) | 
| 101 |   | eqidd 2197 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 𝑎 = 𝑎) | 
| 102 | 13 | oveqd 5939 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑏(+g‘𝑀)𝑐)) | 
| 103 | 48, 101, 102 | oveq123d 5943 | 
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = (𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐))) | 
| 104 | 48 | oveqd 5939 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑎(.r‘𝑀)𝑏)) | 
| 105 | 48 | oveqd 5939 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑎(.r‘𝑀)𝑐)) | 
| 106 | 13, 104, 105 | oveq123d 5943 | 
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐))) | 
| 107 | 103, 106 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ (𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)))) | 
| 108 | 13 | oveqd 5939 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏) = (𝑎(+g‘𝑀)𝑏)) | 
| 109 |   | eqidd 2197 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → 𝑐 = 𝑐) | 
| 110 | 48, 108, 109 | oveq123d 5943 | 
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐)) | 
| 111 | 48 | oveqd 5939 | 
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑉 → (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = (𝑏(.r‘𝑀)𝑐)) | 
| 112 | 13, 105, 111 | oveq123d 5943 | 
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑉 → ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))) | 
| 113 | 110, 112 | eqeq12d 2211 | 
. . . . . . . 8
⊢ (𝑍 ∈ 𝑉 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ↔ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐)))) | 
| 114 | 107, 113 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑍 ∈ 𝑉 → (((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) | 
| 115 | 10, 114 | raleqbidv 2709 | 
. . . . . 6
⊢ (𝑍 ∈ 𝑉 → (∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) | 
| 116 | 10, 115 | raleqbidv 2709 | 
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) | 
| 117 | 10, 116 | raleqbidv 2709 | 
. . . 4
⊢ (𝑍 ∈ 𝑉 → (∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐))) ↔ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) | 
| 118 | 117 | 3anbi3d 1329 | 
. . 3
⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) ↔ (𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐)))))) | 
| 119 | 33, 43, 34, 51 | isring 13556 | 
. . 3
⊢ (𝑀 ∈ Ring ↔ (𝑀 ∈ Grp ∧
(mulGrp‘𝑀) ∈ Mnd
∧ ∀𝑎 ∈
(Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)((𝑎(.r‘𝑀)(𝑏(+g‘𝑀)𝑐)) = ((𝑎(.r‘𝑀)𝑏)(+g‘𝑀)(𝑎(.r‘𝑀)𝑐)) ∧ ((𝑎(+g‘𝑀)𝑏)(.r‘𝑀)𝑐) = ((𝑎(.r‘𝑀)𝑐)(+g‘𝑀)(𝑏(.r‘𝑀)𝑐))))) | 
| 120 | 118, 119 | bitr4di 198 | 
. 2
⊢ (𝑍 ∈ 𝑉 → ((𝑀 ∈ Grp ∧ (mulGrp‘𝑀) ∈ Mnd ∧ ∀𝑎 ∈ {𝑍}∀𝑏 ∈ {𝑍}∀𝑐 ∈ {𝑍} ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)) ∧ ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑏){〈〈𝑍, 𝑍〉, 𝑍〉}𝑐) = ((𝑎{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐){〈〈𝑍, 𝑍〉, 𝑍〉} (𝑏{〈〈𝑍, 𝑍〉, 𝑍〉}𝑐)))) ↔ 𝑀 ∈ Ring)) | 
| 121 | 100, 120 | mpbid 147 | 
1
⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |