ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv GIF version

Theorem eq0rdv 3491
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1 (𝜑 → ¬ 𝑥𝐴)
Assertion
Ref Expression
eq0rdv (𝜑𝐴 = ∅)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4 (𝜑 → ¬ 𝑥𝐴)
21pm2.21d 620 . . 3 (𝜑 → (𝑥𝐴𝑥 ∈ ∅))
32ssrdv 3185 . 2 (𝜑𝐴 ⊆ ∅)
4 ss0 3487 . 2 (𝐴 ⊆ ∅ → 𝐴 = ∅)
53, 4syl 14 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2164  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  exmid01  4227  dcextest  4613  nfvres  5588  map0b  6741  snon0  6994  snexxph  7009  fodju0  7206  fzdisj  10118  bldisj  14569
  Copyright terms: Public domain W3C validator