ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv GIF version

Theorem eq0rdv 3459
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1 (𝜑 → ¬ 𝑥𝐴)
Assertion
Ref Expression
eq0rdv (𝜑𝐴 = ∅)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4 (𝜑 → ¬ 𝑥𝐴)
21pm2.21d 614 . . 3 (𝜑 → (𝑥𝐴𝑥 ∈ ∅))
32ssrdv 3153 . 2 (𝜑𝐴 ⊆ ∅)
4 ss0 3455 . 2 (𝐴 ⊆ ∅ → 𝐴 = ∅)
53, 4syl 14 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wcel 2141  wss 3121  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  exmid01  4184  dcextest  4565  nfvres  5529  map0b  6665  snon0  6913  snexxph  6927  fodju0  7123  fzdisj  10008  bldisj  13195
  Copyright terms: Public domain W3C validator