![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eq0rdv | GIF version |
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) |
Ref | Expression |
---|---|
eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0rdv.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
2 | 1 | pm2.21d 620 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) |
3 | 2 | ssrdv 3185 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) |
4 | ss0 3487 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 |
This theorem is referenced by: exmid01 4227 dcextest 4613 nfvres 5588 map0b 6741 snon0 6994 snexxph 7009 fodju0 7206 fzdisj 10118 bldisj 14569 |
Copyright terms: Public domain | W3C validator |