| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0rdv | GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | pm2.21d 620 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) |
| 3 | 2 | ssrdv 3203 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) |
| 4 | ss0 3505 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: exmid01 4250 dcextest 4637 nfvres 5623 map0b 6787 snon0 7052 snexxph 7067 fodju0 7264 fzdisj 10194 bldisj 14948 |
| Copyright terms: Public domain | W3C validator |