| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0rdv | GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | pm2.21d 620 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) |
| 3 | 2 | ssrdv 3198 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) |
| 4 | ss0 3500 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 |
| This theorem is referenced by: exmid01 4241 dcextest 4628 nfvres 5609 map0b 6773 snon0 7036 snexxph 7051 fodju0 7248 fzdisj 10173 bldisj 14815 |
| Copyright terms: Public domain | W3C validator |