ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eq0rdv GIF version

Theorem eq0rdv 3453
Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
Hypothesis
Ref Expression
eq0rdv.1 (𝜑 → ¬ 𝑥𝐴)
Assertion
Ref Expression
eq0rdv (𝜑𝐴 = ∅)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem eq0rdv
StepHypRef Expression
1 eq0rdv.1 . . . 4 (𝜑 → ¬ 𝑥𝐴)
21pm2.21d 609 . . 3 (𝜑 → (𝑥𝐴𝑥 ∈ ∅))
32ssrdv 3148 . 2 (𝜑𝐴 ⊆ ∅)
4 ss0 3449 . 2 (𝐴 ⊆ ∅ → 𝐴 = ∅)
53, 4syl 14 1 (𝜑𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  wss 3116  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  exmid01  4177  dcextest  4558  nfvres  5519  map0b  6653  snon0  6901  snexxph  6915  fodju0  7111  fzdisj  9987  bldisj  13041
  Copyright terms: Public domain W3C validator