| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eq0rdv | GIF version | ||
| Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| eq0rdv.1 | ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | 
| Ref | Expression | 
|---|---|
| eq0rdv | ⊢ (𝜑 → 𝐴 = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eq0rdv.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑥 ∈ 𝐴) | |
| 2 | 1 | pm2.21d 620 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∅)) | 
| 3 | 2 | ssrdv 3189 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∅) | 
| 4 | ss0 3491 | . 2 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐴 = ∅) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: exmid01 4231 dcextest 4617 nfvres 5592 map0b 6746 snon0 7001 snexxph 7016 fodju0 7213 fzdisj 10127 bldisj 14637 | 
| Copyright terms: Public domain | W3C validator |