| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fi0 | GIF version | ||
| Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| fi0 | ⊢ (fi‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 2 | fival 7045 | . . 3 ⊢ (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} |
| 4 | vprc 4166 | . . . 4 ⊢ ¬ V ∈ V | |
| 5 | id 19 | . . . . . . 7 ⊢ (𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥) | |
| 6 | elinel1 3350 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅) | |
| 7 | elpwi 3615 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅) | |
| 8 | ss0 3492 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 9 | 6, 7, 8 | 3syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅) |
| 10 | 9 | inteqd 3880 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = ∩ ∅) |
| 11 | int0 3889 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtrdi 2245 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = V) |
| 13 | 5, 12 | sylan9eqr 2251 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = V) |
| 14 | 13 | rexlimiva 2609 | . . . . 5 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 = V) |
| 15 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 16 | 14, 15 | eqeltrrdi 2288 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → V ∈ V) |
| 17 | 4, 16 | mto 663 | . . 3 ⊢ ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 |
| 18 | 17 | abf 3495 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} = ∅ |
| 19 | 3, 18 | eqtri 2217 | 1 ⊢ (fi‘∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 ∅c0 3451 𝒫 cpw 3606 ∩ cint 3875 ‘cfv 5259 Fincfn 6808 ficfi 7043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-er 6601 df-en 6809 df-fin 6811 df-fi 7044 |
| This theorem is referenced by: fieq0 7051 |
| Copyright terms: Public domain | W3C validator |