| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fi0 | GIF version | ||
| Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| fi0 | ⊢ (fi‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4187 | . . 3 ⊢ ∅ ∈ V | |
| 2 | fival 7098 | . . 3 ⊢ (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} |
| 4 | vprc 4192 | . . . 4 ⊢ ¬ V ∈ V | |
| 5 | id 19 | . . . . . . 7 ⊢ (𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥) | |
| 6 | elinel1 3367 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅) | |
| 7 | elpwi 3635 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅) | |
| 8 | ss0 3509 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 9 | 6, 7, 8 | 3syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅) |
| 10 | 9 | inteqd 3904 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = ∩ ∅) |
| 11 | int0 3913 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtrdi 2256 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = V) |
| 13 | 5, 12 | sylan9eqr 2262 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = V) |
| 14 | 13 | rexlimiva 2620 | . . . . 5 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 = V) |
| 15 | vex 2779 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 16 | 14, 15 | eqeltrrdi 2299 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → V ∈ V) |
| 17 | 4, 16 | mto 664 | . . 3 ⊢ ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 |
| 18 | 17 | abf 3512 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} = ∅ |
| 19 | 3, 18 | eqtri 2228 | 1 ⊢ (fi‘∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 {cab 2193 ∃wrex 2487 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 ∅c0 3468 𝒫 cpw 3626 ∩ cint 3899 ‘cfv 5290 Fincfn 6850 ficfi 7096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 df-fi 7097 |
| This theorem is referenced by: fieq0 7104 |
| Copyright terms: Public domain | W3C validator |