ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fi0 GIF version

Theorem fi0 6976
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
fi0 (fi‘∅) = ∅

Proof of Theorem fi0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4132 . . 3 ∅ ∈ V
2 fival 6971 . . 3 (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥})
31, 2ax-mp 5 . 2 (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥}
4 vprc 4137 . . . 4 ¬ V ∈ V
5 id 19 . . . . . . 7 (𝑦 = 𝑥𝑦 = 𝑥)
6 elinel1 3323 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
7 elpwi 3586 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅)
8 ss0 3465 . . . . . . . . . 10 (𝑥 ⊆ ∅ → 𝑥 = ∅)
96, 7, 83syl 17 . . . . . . . . 9 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
109inteqd 3851 . . . . . . . 8 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
11 int0 3860 . . . . . . . 8 ∅ = V
1210, 11eqtrdi 2226 . . . . . . 7 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = V)
135, 12sylan9eqr 2232 . . . . . 6 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = V)
1413rexlimiva 2589 . . . . 5 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥𝑦 = V)
15 vex 2742 . . . . 5 𝑦 ∈ V
1614, 15eqeltrrdi 2269 . . . 4 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥 → V ∈ V)
174, 16mto 662 . . 3 ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥
1817abf 3468 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥} = ∅
193, 18eqtri 2198 1 (fi‘∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  Vcvv 2739  cin 3130  wss 3131  c0 3424  𝒫 cpw 3577   cint 3846  cfv 5218  Fincfn 6742  ficfi 6969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6537  df-en 6743  df-fin 6745  df-fi 6970
This theorem is referenced by:  fieq0  6977
  Copyright terms: Public domain W3C validator