Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fi0 | GIF version |
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
fi0 | ⊢ (fi‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . 3 ⊢ ∅ ∈ V | |
2 | fival 6947 | . . 3 ⊢ (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥}) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} |
4 | vprc 4121 | . . . 4 ⊢ ¬ V ∈ V | |
5 | id 19 | . . . . . . 7 ⊢ (𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥) | |
6 | elinel1 3313 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅) | |
7 | elpwi 3575 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅) | |
8 | ss0 3455 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
9 | 6, 7, 8 | 3syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅) |
10 | 9 | inteqd 3836 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = ∩ ∅) |
11 | int0 3845 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtrdi 2219 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = V) |
13 | 5, 12 | sylan9eqr 2225 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = V) |
14 | 13 | rexlimiva 2582 | . . . . 5 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 = V) |
15 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
16 | 14, 15 | eqeltrrdi 2262 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → V ∈ V) |
17 | 4, 16 | mto 657 | . . 3 ⊢ ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 |
18 | 17 | abf 3458 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} = ∅ |
19 | 3, 18 | eqtri 2191 | 1 ⊢ (fi‘∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 {cab 2156 ∃wrex 2449 Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 ∩ cint 3831 ‘cfv 5198 Fincfn 6718 ficfi 6945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-fin 6721 df-fi 6946 |
This theorem is referenced by: fieq0 6953 |
Copyright terms: Public domain | W3C validator |