| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsym | GIF version | ||
| Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvsym | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 1501 | . 2 ⊢ (∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) | |
| 2 | relcnv 5061 | . . 3 ⊢ Rel ◡𝑅 | |
| 3 | ssrel 4764 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| 5 | vex 2775 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 6 | vex 2775 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | 5, 6 | brcnv 4862 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 8 | df-br 4046 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) | |
| 9 | 7, 8 | bitr3i 186 | . . . 4 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 10 | df-br 4046 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝑅) | |
| 11 | 9, 10 | imbi12i 239 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| 12 | 11 | 2albii 1494 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
| 13 | 1, 4, 12 | 3bitr4i 212 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2176 ⊆ wss 3166 〈cop 3636 class class class wbr 4045 ◡ccnv 4675 Rel wrel 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 |
| This theorem is referenced by: dfer2 6623 |
| Copyright terms: Public domain | W3C validator |