ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsym GIF version

Theorem cnvsym 5085
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 1502 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
2 relcnv 5079 . . 3 Rel 𝑅
3 ssrel 4781 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5 vex 2779 . . . . . 6 𝑦 ∈ V
6 vex 2779 . . . . . 6 𝑥 ∈ V
75, 6brcnv 4879 . . . . 5 (𝑦𝑅𝑥𝑥𝑅𝑦)
8 df-br 4060 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
97, 8bitr3i 186 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
10 df-br 4060 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
119, 10imbi12i 239 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
12112albii 1495 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
131, 4, 123bitr4i 212 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wcel 2178  wss 3174  cop 3646   class class class wbr 4059  ccnv 4692  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  dfer2  6644
  Copyright terms: Public domain W3C validator