![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvsym | GIF version |
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvsym | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1489 | . 2 ⊢ (∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) | |
2 | relcnv 5043 | . . 3 ⊢ Rel ◡𝑅 | |
3 | ssrel 4747 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
5 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 4845 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | df-br 4030 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 186 | . . . 4 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
10 | df-br 4030 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝑅) | |
11 | 9, 10 | imbi12i 239 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
12 | 11 | 2albii 1482 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
13 | 1, 4, 12 | 3bitr4i 212 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 ⊆ wss 3153 〈cop 3621 class class class wbr 4029 ◡ccnv 4658 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: dfer2 6588 |
Copyright terms: Public domain | W3C validator |