![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcnveq | GIF version |
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5264. (Contributed by Jim Kingdon, 24-Dec-2018.) |
Ref | Expression |
---|---|
funcnveq | ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5043 | . . 3 ⊢ Rel ◡𝐴 | |
2 | dffun2 5264 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧))) | |
3 | 1, 2 | mpbiran 942 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) |
4 | alcom 1489 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) | |
5 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
6 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 4845 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
8 | vex 2763 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
9 | 5, 8 | brcnv 4845 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
10 | 7, 9 | anbi12i 460 | . . . . 5 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦)) |
11 | 10 | imbi1i 238 | . . . 4 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
12 | 11 | 2albii 1482 | . . 3 ⊢ (∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
13 | 12 | albii 1481 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
14 | 3, 4, 13 | 3bitri 206 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 class class class wbr 4029 ◡ccnv 4658 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: imain 5336 |
Copyright terms: Public domain | W3C validator |