ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq GIF version

Theorem funcnveq 5321
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5268. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq (Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 5047 . . 3 Rel 𝐴
2 dffun2 5268 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧)))
31, 2mpbiran 942 . 2 (Fun 𝐴 ↔ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧))
4 alcom 1492 . 2 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧))
5 vex 2766 . . . . . . 7 𝑦 ∈ V
6 vex 2766 . . . . . . 7 𝑥 ∈ V
75, 6brcnv 4849 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
8 vex 2766 . . . . . . 7 𝑧 ∈ V
95, 8brcnv 4849 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
107, 9anbi12i 460 . . . . 5 ((𝑦𝐴𝑥𝑦𝐴𝑧) ↔ (𝑥𝐴𝑦𝑧𝐴𝑦))
1110imbi1i 238 . . . 4 (((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
12112albii 1485 . . 3 (∀𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
1312albii 1484 . 2 (∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
143, 4, 133bitri 206 1 (Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   class class class wbr 4033  ccnv 4662  Rel wrel 4668  Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by:  imain  5340
  Copyright terms: Public domain W3C validator