Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnveq | GIF version |
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5198. (Contributed by Jim Kingdon, 24-Dec-2018.) |
Ref | Expression |
---|---|
funcnveq | ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . 3 ⊢ Rel ◡𝐴 | |
2 | dffun2 5198 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧))) | |
3 | 1, 2 | mpbiran 930 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) |
4 | alcom 1466 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) | |
5 | vex 2729 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
6 | vex 2729 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 4787 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
8 | vex 2729 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
9 | 5, 8 | brcnv 4787 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
10 | 7, 9 | anbi12i 456 | . . . . 5 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦)) |
11 | 10 | imbi1i 237 | . . . 4 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
12 | 11 | 2albii 1459 | . . 3 ⊢ (∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
13 | 12 | albii 1458 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
14 | 3, 4, 13 | 3bitri 205 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 class class class wbr 3982 ◡ccnv 4603 Rel wrel 4609 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: imain 5270 |
Copyright terms: Public domain | W3C validator |