ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq GIF version

Theorem funcnveq 5380
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5324. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq (Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 5102 . . 3 Rel 𝐴
2 dffun2 5324 . . 3 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧)))
31, 2mpbiran 946 . 2 (Fun 𝐴 ↔ ∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧))
4 alcom 1524 . 2 (∀𝑦𝑥𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧))
5 vex 2802 . . . . . . 7 𝑦 ∈ V
6 vex 2802 . . . . . . 7 𝑥 ∈ V
75, 6brcnv 4902 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
8 vex 2802 . . . . . . 7 𝑧 ∈ V
95, 8brcnv 4902 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
107, 9anbi12i 460 . . . . 5 ((𝑦𝐴𝑥𝑦𝐴𝑧) ↔ (𝑥𝐴𝑦𝑧𝐴𝑦))
1110imbi1i 238 . . . 4 (((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
12112albii 1517 . . 3 (∀𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
1312albii 1516 . 2 (∀𝑥𝑦𝑧((𝑦𝐴𝑥𝑦𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
143, 4, 133bitri 206 1 (Fun 𝐴 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝑧𝐴𝑦) → 𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   class class class wbr 4082  ccnv 4715  Rel wrel 4721  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-fun 5316
This theorem is referenced by:  imain  5399
  Copyright terms: Public domain W3C validator