| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnveq | GIF version | ||
| Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5269. (Contributed by Jim Kingdon, 24-Dec-2018.) |
| Ref | Expression |
|---|---|
| funcnveq | ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5048 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | dffun2 5269 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧))) | |
| 3 | 1, 2 | mpbiran 942 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) |
| 4 | alcom 1492 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧)) | |
| 5 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 6 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 5, 6 | brcnv 4850 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 8 | vex 2766 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 9 | 5, 8 | brcnv 4850 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 10 | 7, 9 | anbi12i 460 | . . . . 5 ⊢ ((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) ↔ (𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦)) |
| 11 | 10 | imbi1i 238 | . . . 4 ⊢ (((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
| 12 | 11 | 2albii 1485 | . . 3 ⊢ (∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
| 13 | 12 | albii 1484 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑦◡𝐴𝑥 ∧ 𝑦◡𝐴𝑧) → 𝑥 = 𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
| 14 | 3, 4, 13 | 3bitri 206 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑦) → 𝑥 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 class class class wbr 4034 ◡ccnv 4663 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-fun 5261 |
| This theorem is referenced by: imain 5341 |
| Copyright terms: Public domain | W3C validator |