| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrrid 156 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3699 preqr1g 3844 opth1 4322 euotd 4341 tz7.2 4445 reusv3 4551 alxfr 4552 reuhypd 4562 ordsucim 4592 suc11g 4649 nlimsucg 4658 xpsspw 4831 funcnvuni 5390 fvmptdv2 5726 fsn 5809 fconst2g 5858 funfvima 5875 foco2 5883 isores3 5945 riotaeqimp 5985 eusvobj2 5993 ovmpodv2 6144 ovelrn 6160 f1opw2 6218 suppssfv 6220 suppssov1 6221 nnmordi 6670 nnmord 6671 qsss 6749 eroveu 6781 th3qlem1 6792 mapsncnv 6850 elixpsn 6890 ixpsnf1o 6891 en1bg 6960 pw2f1odclem 7003 mapxpen 7017 en1eqsnbi 7124 updjud 7257 addnidpig 7531 enq0tr 7629 prcdnql 7679 prcunqu 7680 genipv 7704 genpelvl 7707 genpelvu 7708 distrlem5prl 7781 distrlem5pru 7782 aptiprlemu 7835 mulrid 8151 ltne 8239 cnegex 8332 creur 9114 creui 9115 cju 9116 nnsub 9157 un0addcl 9410 un0mulcl 9411 zaddcl 9494 elz2 9526 qmulz 9826 qre 9828 qnegcl 9839 elpqb 9853 xrltne 10017 xlesubadd 10087 iccid 10129 fzsn 10270 fzsuc2 10283 fz1sbc 10300 elfzp12 10303 modqmuladd 10596 bcval5 10993 bcpasc 10996 hashprg 11038 hashfzo 11052 wrdl1s1 11171 cats1un 11261 swrdccat3blem 11279 shftlem 11335 replim 11378 sqrtsq 11563 absle 11608 maxabslemval 11727 negfi 11747 xrmaxiflemval 11769 summodclem2 11901 summodc 11902 zsumdc 11903 fsum3 11906 fsummulc2 11967 fsum00 11981 isumsplit 12010 prodmodclem2 12096 prodmodc 12097 zproddc 12098 fprodseq 12102 prodsnf 12111 fzo0dvdseq 12376 divalgmod 12446 gcdabs1 12518 dvdsgcd 12541 dvdsmulgcd 12554 lcmgcdeq 12613 isprm2lem 12646 dvdsprime 12652 coprm 12674 prmdvdsexpr 12680 rpexp 12683 phibndlem 12746 dfphi2 12750 hashgcdlem 12768 odzdvds 12776 nnoddn2prm 12791 pythagtriplem1 12796 pceulem 12825 pcqmul 12834 pcqcl 12837 pcxnn0cl 12841 pcxcl 12842 pcneg 12856 pcabs 12857 pcgcd1 12859 pcz 12863 pcprmpw2 12864 pcprmpw 12865 dvdsprmpweqle 12868 difsqpwdvds 12869 pcaddlem 12870 pcadd 12871 pcmpt 12874 pockthg 12888 4sqlem2 12920 4sqlem4 12923 mul4sq 12925 mnd1id 13497 0subm 13525 mulgnn0p1 13678 mulgnn0ass 13703 dvreq1 14114 nzrunit 14160 rrgeq0 14237 domneq0 14244 lmodfopnelem2 14297 lss1d 14355 lspsneq0 14398 znidom 14629 znunit 14631 znrrg 14632 istopon 14695 eltg3 14739 tgidm 14756 restbasg 14850 tgrest 14851 tgcn 14890 cnconst 14916 lmss 14928 txbas 14940 txbasval 14949 upxp 14954 blssps 15109 blss 15110 metrest 15188 blssioo 15235 elcncf1di 15261 elply2 15417 plyf 15419 dvdsppwf1o 15671 perfectlem2 15682 perfect 15683 lgsmod 15713 lgsne0 15725 lgsdirnn0 15734 gausslemma2dlem1a 15745 gausslemma2dlem6 15754 lgseisenlem2 15758 lgsquadlem1 15764 lgsquadlem2 15765 2lgslem1b 15776 2sqlem2 15802 mul2sq 15803 2sqlem7 15808 lpvtx 15887 usgredgop 15979 wlk1walkdom 16080 upgrwlkvtxedg 16085 bj-peano4 16342 |
| Copyright terms: Public domain | W3C validator |