Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5ibr 155 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimprcd 159 elsn2g 3608 preqr1g 3745 opth1 4213 euotd 4231 tz7.2 4331 reusv3 4437 alxfr 4438 reuhypd 4448 ordsucim 4476 suc11g 4533 nlimsucg 4542 xpsspw 4715 funcnvuni 5256 fvmptdv2 5574 fsn 5656 fconst2g 5699 funfvima 5715 foco2 5721 isores3 5782 eusvobj2 5827 ovmpodv2 5971 ovelrn 5986 f1opw2 6043 suppssfv 6045 suppssov1 6046 nnmordi 6480 nnmord 6481 qsss 6556 eroveu 6588 th3qlem1 6599 mapsncnv 6657 elixpsn 6697 ixpsnf1o 6698 en1bg 6762 mapxpen 6810 en1eqsnbi 6910 updjud 7043 addnidpig 7273 enq0tr 7371 prcdnql 7421 prcunqu 7422 genipv 7446 genpelvl 7449 genpelvu 7450 distrlem5prl 7523 distrlem5pru 7524 aptiprlemu 7577 mulid1 7892 ltne 7979 cnegex 8072 creur 8850 creui 8851 cju 8852 nnsub 8892 un0addcl 9143 un0mulcl 9144 zaddcl 9227 elz2 9258 qmulz 9557 qre 9559 qnegcl 9570 elpqb 9583 xrltne 9745 xlesubadd 9815 iccid 9857 fzsn 9997 fzsuc2 10010 fz1sbc 10027 elfzp12 10030 modqmuladd 10297 bcval5 10672 bcpasc 10675 hashprg 10717 hashfzo 10731 shftlem 10754 replim 10797 sqrtsq 10982 absle 11027 maxabslemval 11146 negfi 11165 xrmaxiflemval 11187 summodclem2 11319 summodc 11320 zsumdc 11321 fsum3 11324 fsummulc2 11385 fsum00 11399 isumsplit 11428 prodmodclem2 11514 prodmodc 11515 zproddc 11516 fprodseq 11520 prodsnf 11529 fzo0dvdseq 11791 divalgmod 11860 gcdabs1 11918 dvdsgcd 11941 dvdsmulgcd 11954 lcmgcdeq 12011 isprm2lem 12044 dvdsprime 12050 coprm 12072 prmdvdsexpr 12078 rpexp 12081 phibndlem 12144 dfphi2 12148 hashgcdlem 12166 odzdvds 12173 nnoddn2prm 12188 pythagtriplem1 12193 pceulem 12222 pcqmul 12231 pcqcl 12234 pcxnn0cl 12238 pcxcl 12239 pcneg 12252 pcabs 12253 pcgcd1 12255 pcz 12259 pcprmpw2 12260 pcprmpw 12261 dvdsprmpweqle 12264 difsqpwdvds 12265 pcaddlem 12266 pcadd 12267 pcmpt 12269 pockthg 12283 4sqlem2 12315 4sqlem4 12318 mul4sq 12320 istopon 12611 eltg3 12657 tgidm 12674 restbasg 12768 tgrest 12769 tgcn 12808 cnconst 12834 lmss 12846 txbas 12858 txbasval 12867 upxp 12872 blssps 13027 blss 13028 metrest 13106 blssioo 13145 elcncf1di 13166 lgsmod 13527 lgsne0 13539 lgsdirnn0 13548 2sqlem2 13551 mul2sq 13552 2sqlem7 13557 bj-peano4 13797 |
Copyright terms: Public domain | W3C validator |