Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5ibr 155 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimprcd 159 elsn2g 3589 preqr1g 3725 opth1 4191 euotd 4209 tz7.2 4309 reusv3 4414 alxfr 4415 reuhypd 4425 ordsucim 4453 suc11g 4510 nlimsucg 4519 xpsspw 4691 funcnvuni 5232 fvmptdv2 5550 fsn 5632 fconst2g 5675 funfvima 5689 foco2 5695 isores3 5756 eusvobj2 5800 ovmpodv2 5944 ovelrn 5959 f1opw2 6016 suppssfv 6018 suppssov1 6019 nnmordi 6452 nnmord 6453 qsss 6528 eroveu 6560 th3qlem1 6571 mapsncnv 6629 elixpsn 6669 ixpsnf1o 6670 en1bg 6734 mapxpen 6782 en1eqsnbi 6882 updjud 7012 addnidpig 7235 enq0tr 7333 prcdnql 7383 prcunqu 7384 genipv 7408 genpelvl 7411 genpelvu 7412 distrlem5prl 7485 distrlem5pru 7486 aptiprlemu 7539 mulid1 7854 ltne 7941 cnegex 8032 creur 8809 creui 8810 cju 8811 nnsub 8851 un0addcl 9102 un0mulcl 9103 zaddcl 9186 elz2 9214 qmulz 9510 qre 9512 qnegcl 9523 elpqb 9536 xrltne 9695 xlesubadd 9765 iccid 9807 fzsn 9946 fzsuc2 9959 fz1sbc 9976 elfzp12 9979 modqmuladd 10243 bcval5 10614 bcpasc 10617 hashprg 10659 hashfzo 10673 shftlem 10693 replim 10736 sqrtsq 10921 absle 10966 maxabslemval 11085 negfi 11104 xrmaxiflemval 11124 summodclem2 11256 summodc 11257 zsumdc 11258 fsum3 11261 fsummulc2 11322 fsum00 11336 isumsplit 11365 prodmodclem2 11451 prodmodc 11452 zproddc 11453 fprodseq 11457 prodsnf 11466 fzo0dvdseq 11722 divalgmod 11791 gcdabs1 11845 dvdsgcd 11868 dvdsmulgcd 11881 lcmgcdeq 11932 isprm2lem 11965 dvdsprime 11971 coprm 11990 prmdvdsexpr 11996 rpexp 11999 phibndlem 12060 dfphi2 12064 hashgcdlem 12078 istopon 12358 eltg3 12404 tgidm 12421 restbasg 12515 tgrest 12516 tgcn 12555 cnconst 12581 lmss 12593 txbas 12605 txbasval 12614 upxp 12619 blssps 12774 blss 12775 metrest 12853 blssioo 12892 elcncf1di 12913 bj-peano4 13476 |
Copyright terms: Public domain | W3C validator |