| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrrid 156 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3656 preqr1g 3797 opth1 4270 euotd 4288 tz7.2 4390 reusv3 4496 alxfr 4497 reuhypd 4507 ordsucim 4537 suc11g 4594 nlimsucg 4603 xpsspw 4776 funcnvuni 5328 fvmptdv2 5654 fsn 5737 fconst2g 5780 funfvima 5797 foco2 5803 isores3 5865 eusvobj2 5911 ovmpodv2 6060 ovelrn 6076 f1opw2 6133 suppssfv 6135 suppssov1 6136 nnmordi 6583 nnmord 6584 qsss 6662 eroveu 6694 th3qlem1 6705 mapsncnv 6763 elixpsn 6803 ixpsnf1o 6804 en1bg 6868 pw2f1odclem 6904 mapxpen 6918 en1eqsnbi 7024 updjud 7157 addnidpig 7422 enq0tr 7520 prcdnql 7570 prcunqu 7571 genipv 7595 genpelvl 7598 genpelvu 7599 distrlem5prl 7672 distrlem5pru 7673 aptiprlemu 7726 mulrid 8042 ltne 8130 cnegex 8223 creur 9005 creui 9006 cju 9007 nnsub 9048 un0addcl 9301 un0mulcl 9302 zaddcl 9385 elz2 9416 qmulz 9716 qre 9718 qnegcl 9729 elpqb 9743 xrltne 9907 xlesubadd 9977 iccid 10019 fzsn 10160 fzsuc2 10173 fz1sbc 10190 elfzp12 10193 modqmuladd 10477 bcval5 10874 bcpasc 10877 hashprg 10919 hashfzo 10933 shftlem 11000 replim 11043 sqrtsq 11228 absle 11273 maxabslemval 11392 negfi 11412 xrmaxiflemval 11434 summodclem2 11566 summodc 11567 zsumdc 11568 fsum3 11571 fsummulc2 11632 fsum00 11646 isumsplit 11675 prodmodclem2 11761 prodmodc 11762 zproddc 11763 fprodseq 11767 prodsnf 11776 fzo0dvdseq 12041 divalgmod 12111 gcdabs1 12183 dvdsgcd 12206 dvdsmulgcd 12219 lcmgcdeq 12278 isprm2lem 12311 dvdsprime 12317 coprm 12339 prmdvdsexpr 12345 rpexp 12348 phibndlem 12411 dfphi2 12415 hashgcdlem 12433 odzdvds 12441 nnoddn2prm 12456 pythagtriplem1 12461 pceulem 12490 pcqmul 12499 pcqcl 12502 pcxnn0cl 12506 pcxcl 12507 pcneg 12521 pcabs 12522 pcgcd1 12524 pcz 12528 pcprmpw2 12529 pcprmpw 12530 dvdsprmpweqle 12533 difsqpwdvds 12534 pcaddlem 12535 pcadd 12536 pcmpt 12539 pockthg 12553 4sqlem2 12585 4sqlem4 12588 mul4sq 12590 mnd1id 13160 0subm 13188 mulgnn0p1 13341 mulgnn0ass 13366 dvreq1 13776 nzrunit 13822 rrgeq0 13899 domneq0 13906 lmodfopnelem2 13959 lss1d 14017 lspsneq0 14060 znidom 14291 znunit 14293 znrrg 14294 istopon 14357 eltg3 14401 tgidm 14418 restbasg 14512 tgrest 14513 tgcn 14552 cnconst 14578 lmss 14590 txbas 14602 txbasval 14611 upxp 14616 blssps 14771 blss 14772 metrest 14850 blssioo 14897 elcncf1di 14923 elply2 15079 plyf 15081 dvdsppwf1o 15333 perfectlem2 15344 perfect 15345 lgsmod 15375 lgsne0 15387 lgsdirnn0 15396 gausslemma2dlem1a 15407 gausslemma2dlem6 15416 lgseisenlem2 15420 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem1b 15438 2sqlem2 15464 mul2sq 15465 2sqlem7 15470 bj-peano4 15709 |
| Copyright terms: Public domain | W3C validator |