Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5ibr 155 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimprcd 159 elsn2g 3617 preqr1g 3754 opth1 4222 euotd 4240 tz7.2 4340 reusv3 4446 alxfr 4447 reuhypd 4457 ordsucim 4485 suc11g 4542 nlimsucg 4551 xpsspw 4724 funcnvuni 5269 fvmptdv2 5589 fsn 5672 fconst2g 5715 funfvima 5731 foco2 5737 isores3 5798 eusvobj2 5843 ovmpodv2 5990 ovelrn 6005 f1opw2 6059 suppssfv 6061 suppssov1 6062 nnmordi 6499 nnmord 6500 qsss 6576 eroveu 6608 th3qlem1 6619 mapsncnv 6677 elixpsn 6717 ixpsnf1o 6718 en1bg 6782 mapxpen 6830 en1eqsnbi 6930 updjud 7063 addnidpig 7302 enq0tr 7400 prcdnql 7450 prcunqu 7451 genipv 7475 genpelvl 7478 genpelvu 7479 distrlem5prl 7552 distrlem5pru 7553 aptiprlemu 7606 mulid1 7921 ltne 8008 cnegex 8101 creur 8879 creui 8880 cju 8881 nnsub 8921 un0addcl 9172 un0mulcl 9173 zaddcl 9256 elz2 9287 qmulz 9586 qre 9588 qnegcl 9599 elpqb 9612 xrltne 9774 xlesubadd 9844 iccid 9886 fzsn 10026 fzsuc2 10039 fz1sbc 10056 elfzp12 10059 modqmuladd 10326 bcval5 10701 bcpasc 10704 hashprg 10747 hashfzo 10761 shftlem 10784 replim 10827 sqrtsq 11012 absle 11057 maxabslemval 11176 negfi 11195 xrmaxiflemval 11217 summodclem2 11349 summodc 11350 zsumdc 11351 fsum3 11354 fsummulc2 11415 fsum00 11429 isumsplit 11458 prodmodclem2 11544 prodmodc 11545 zproddc 11546 fprodseq 11550 prodsnf 11559 fzo0dvdseq 11821 divalgmod 11890 gcdabs1 11948 dvdsgcd 11971 dvdsmulgcd 11984 lcmgcdeq 12041 isprm2lem 12074 dvdsprime 12080 coprm 12102 prmdvdsexpr 12108 rpexp 12111 phibndlem 12174 dfphi2 12178 hashgcdlem 12196 odzdvds 12203 nnoddn2prm 12218 pythagtriplem1 12223 pceulem 12252 pcqmul 12261 pcqcl 12264 pcxnn0cl 12268 pcxcl 12269 pcneg 12282 pcabs 12283 pcgcd1 12285 pcz 12289 pcprmpw2 12290 pcprmpw 12291 dvdsprmpweqle 12294 difsqpwdvds 12295 pcaddlem 12296 pcadd 12297 pcmpt 12299 pockthg 12313 4sqlem2 12345 4sqlem4 12348 mul4sq 12350 mnd1id 12684 0subm 12706 mulgnn0p1 12827 mulgnn0ass 12851 istopon 12890 eltg3 12936 tgidm 12953 restbasg 13047 tgrest 13048 tgcn 13087 cnconst 13113 lmss 13125 txbas 13137 txbasval 13146 upxp 13151 blssps 13306 blss 13307 metrest 13385 blssioo 13424 elcncf1di 13445 lgsmod 13806 lgsne0 13818 lgsdirnn0 13827 2sqlem2 13830 mul2sq 13831 2sqlem7 13836 bj-peano4 14075 |
Copyright terms: Public domain | W3C validator |