| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrrid 156 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3699 preqr1g 3843 opth1 4321 euotd 4340 tz7.2 4442 reusv3 4548 alxfr 4549 reuhypd 4559 ordsucim 4589 suc11g 4646 nlimsucg 4655 xpsspw 4828 funcnvuni 5386 fvmptdv2 5717 fsn 5800 fconst2g 5847 funfvima 5864 foco2 5870 isores3 5932 riotaeqimp 5972 eusvobj2 5980 ovmpodv2 6129 ovelrn 6145 f1opw2 6202 suppssfv 6204 suppssov1 6205 nnmordi 6652 nnmord 6653 qsss 6731 eroveu 6763 th3qlem1 6774 mapsncnv 6832 elixpsn 6872 ixpsnf1o 6873 en1bg 6942 pw2f1odclem 6983 mapxpen 6997 en1eqsnbi 7104 updjud 7237 addnidpig 7511 enq0tr 7609 prcdnql 7659 prcunqu 7660 genipv 7684 genpelvl 7687 genpelvu 7688 distrlem5prl 7761 distrlem5pru 7762 aptiprlemu 7815 mulrid 8131 ltne 8219 cnegex 8312 creur 9094 creui 9095 cju 9096 nnsub 9137 un0addcl 9390 un0mulcl 9391 zaddcl 9474 elz2 9506 qmulz 9806 qre 9808 qnegcl 9819 elpqb 9833 xrltne 9997 xlesubadd 10067 iccid 10109 fzsn 10250 fzsuc2 10263 fz1sbc 10280 elfzp12 10283 modqmuladd 10575 bcval5 10972 bcpasc 10975 hashprg 11017 hashfzo 11031 wrdl1s1 11149 cats1un 11239 swrdccat3blem 11257 shftlem 11313 replim 11356 sqrtsq 11541 absle 11586 maxabslemval 11705 negfi 11725 xrmaxiflemval 11747 summodclem2 11879 summodc 11880 zsumdc 11881 fsum3 11884 fsummulc2 11945 fsum00 11959 isumsplit 11988 prodmodclem2 12074 prodmodc 12075 zproddc 12076 fprodseq 12080 prodsnf 12089 fzo0dvdseq 12354 divalgmod 12424 gcdabs1 12496 dvdsgcd 12519 dvdsmulgcd 12532 lcmgcdeq 12591 isprm2lem 12624 dvdsprime 12630 coprm 12652 prmdvdsexpr 12658 rpexp 12661 phibndlem 12724 dfphi2 12728 hashgcdlem 12746 odzdvds 12754 nnoddn2prm 12769 pythagtriplem1 12774 pceulem 12803 pcqmul 12812 pcqcl 12815 pcxnn0cl 12819 pcxcl 12820 pcneg 12834 pcabs 12835 pcgcd1 12837 pcz 12841 pcprmpw2 12842 pcprmpw 12843 dvdsprmpweqle 12846 difsqpwdvds 12847 pcaddlem 12848 pcadd 12849 pcmpt 12852 pockthg 12866 4sqlem2 12898 4sqlem4 12901 mul4sq 12903 mnd1id 13475 0subm 13503 mulgnn0p1 13656 mulgnn0ass 13681 dvreq1 14091 nzrunit 14137 rrgeq0 14214 domneq0 14221 lmodfopnelem2 14274 lss1d 14332 lspsneq0 14375 znidom 14606 znunit 14608 znrrg 14609 istopon 14672 eltg3 14716 tgidm 14733 restbasg 14827 tgrest 14828 tgcn 14867 cnconst 14893 lmss 14905 txbas 14917 txbasval 14926 upxp 14931 blssps 15086 blss 15087 metrest 15165 blssioo 15212 elcncf1di 15238 elply2 15394 plyf 15396 dvdsppwf1o 15648 perfectlem2 15659 perfect 15660 lgsmod 15690 lgsne0 15702 lgsdirnn0 15711 gausslemma2dlem1a 15722 gausslemma2dlem6 15731 lgseisenlem2 15735 lgsquadlem1 15741 lgsquadlem2 15742 2lgslem1b 15753 2sqlem2 15779 mul2sq 15780 2sqlem7 15785 lpvtx 15864 usgredgop 15956 bj-peano4 16248 |
| Copyright terms: Public domain | W3C validator |