| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrrid 156 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3655 preqr1g 3796 opth1 4269 euotd 4287 tz7.2 4389 reusv3 4495 alxfr 4496 reuhypd 4506 ordsucim 4536 suc11g 4593 nlimsucg 4602 xpsspw 4775 funcnvuni 5327 fvmptdv2 5651 fsn 5734 fconst2g 5777 funfvima 5794 foco2 5800 isores3 5862 eusvobj2 5908 ovmpodv2 6056 ovelrn 6072 f1opw2 6129 suppssfv 6131 suppssov1 6132 nnmordi 6574 nnmord 6575 qsss 6653 eroveu 6685 th3qlem1 6696 mapsncnv 6754 elixpsn 6794 ixpsnf1o 6795 en1bg 6859 pw2f1odclem 6895 mapxpen 6909 en1eqsnbi 7015 updjud 7148 addnidpig 7403 enq0tr 7501 prcdnql 7551 prcunqu 7552 genipv 7576 genpelvl 7579 genpelvu 7580 distrlem5prl 7653 distrlem5pru 7654 aptiprlemu 7707 mulrid 8023 ltne 8111 cnegex 8204 creur 8986 creui 8987 cju 8988 nnsub 9029 un0addcl 9282 un0mulcl 9283 zaddcl 9366 elz2 9397 qmulz 9697 qre 9699 qnegcl 9710 elpqb 9724 xrltne 9888 xlesubadd 9958 iccid 10000 fzsn 10141 fzsuc2 10154 fz1sbc 10171 elfzp12 10174 modqmuladd 10458 bcval5 10855 bcpasc 10858 hashprg 10900 hashfzo 10914 shftlem 10981 replim 11024 sqrtsq 11209 absle 11254 maxabslemval 11373 negfi 11393 xrmaxiflemval 11415 summodclem2 11547 summodc 11548 zsumdc 11549 fsum3 11552 fsummulc2 11613 fsum00 11627 isumsplit 11656 prodmodclem2 11742 prodmodc 11743 zproddc 11744 fprodseq 11748 prodsnf 11757 fzo0dvdseq 12022 divalgmod 12092 gcdabs1 12156 dvdsgcd 12179 dvdsmulgcd 12192 lcmgcdeq 12251 isprm2lem 12284 dvdsprime 12290 coprm 12312 prmdvdsexpr 12318 rpexp 12321 phibndlem 12384 dfphi2 12388 hashgcdlem 12406 odzdvds 12414 nnoddn2prm 12429 pythagtriplem1 12434 pceulem 12463 pcqmul 12472 pcqcl 12475 pcxnn0cl 12479 pcxcl 12480 pcneg 12494 pcabs 12495 pcgcd1 12497 pcz 12501 pcprmpw2 12502 pcprmpw 12503 dvdsprmpweqle 12506 difsqpwdvds 12507 pcaddlem 12508 pcadd 12509 pcmpt 12512 pockthg 12526 4sqlem2 12558 4sqlem4 12561 mul4sq 12563 mnd1id 13088 0subm 13116 mulgnn0p1 13263 mulgnn0ass 13288 dvreq1 13698 nzrunit 13744 rrgeq0 13821 domneq0 13828 lmodfopnelem2 13881 lss1d 13939 lspsneq0 13982 znidom 14213 znunit 14215 znrrg 14216 istopon 14249 eltg3 14293 tgidm 14310 restbasg 14404 tgrest 14405 tgcn 14444 cnconst 14470 lmss 14482 txbas 14494 txbasval 14503 upxp 14508 blssps 14663 blss 14664 metrest 14742 blssioo 14789 elcncf1di 14815 elply2 14971 plyf 14973 dvdsppwf1o 15225 perfectlem2 15236 perfect 15237 lgsmod 15267 lgsne0 15279 lgsdirnn0 15288 gausslemma2dlem1a 15299 gausslemma2dlem6 15308 lgseisenlem2 15312 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1b 15330 2sqlem2 15356 mul2sq 15357 2sqlem7 15362 bj-peano4 15601 |
| Copyright terms: Public domain | W3C validator |