| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 | ⊢ (𝜑 → 𝜃) |
| imbitrrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibrcom | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | imbitrrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrrid 156 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3668 preqr1g 3810 opth1 4285 euotd 4304 tz7.2 4406 reusv3 4512 alxfr 4513 reuhypd 4523 ordsucim 4553 suc11g 4610 nlimsucg 4619 xpsspw 4792 funcnvuni 5349 fvmptdv2 5679 fsn 5762 fconst2g 5809 funfvima 5826 foco2 5832 isores3 5894 eusvobj2 5940 ovmpodv2 6089 ovelrn 6105 f1opw2 6162 suppssfv 6164 suppssov1 6165 nnmordi 6612 nnmord 6613 qsss 6691 eroveu 6723 th3qlem1 6734 mapsncnv 6792 elixpsn 6832 ixpsnf1o 6833 en1bg 6902 pw2f1odclem 6943 mapxpen 6957 en1eqsnbi 7063 updjud 7196 addnidpig 7462 enq0tr 7560 prcdnql 7610 prcunqu 7611 genipv 7635 genpelvl 7638 genpelvu 7639 distrlem5prl 7712 distrlem5pru 7713 aptiprlemu 7766 mulrid 8082 ltne 8170 cnegex 8263 creur 9045 creui 9046 cju 9047 nnsub 9088 un0addcl 9341 un0mulcl 9342 zaddcl 9425 elz2 9457 qmulz 9757 qre 9759 qnegcl 9770 elpqb 9784 xrltne 9948 xlesubadd 10018 iccid 10060 fzsn 10201 fzsuc2 10214 fz1sbc 10231 elfzp12 10234 modqmuladd 10524 bcval5 10921 bcpasc 10924 hashprg 10966 hashfzo 10980 wrdl1s1 11098 shftlem 11177 replim 11220 sqrtsq 11405 absle 11450 maxabslemval 11569 negfi 11589 xrmaxiflemval 11611 summodclem2 11743 summodc 11744 zsumdc 11745 fsum3 11748 fsummulc2 11809 fsum00 11823 isumsplit 11852 prodmodclem2 11938 prodmodc 11939 zproddc 11940 fprodseq 11944 prodsnf 11953 fzo0dvdseq 12218 divalgmod 12288 gcdabs1 12360 dvdsgcd 12383 dvdsmulgcd 12396 lcmgcdeq 12455 isprm2lem 12488 dvdsprime 12494 coprm 12516 prmdvdsexpr 12522 rpexp 12525 phibndlem 12588 dfphi2 12592 hashgcdlem 12610 odzdvds 12618 nnoddn2prm 12633 pythagtriplem1 12638 pceulem 12667 pcqmul 12676 pcqcl 12679 pcxnn0cl 12683 pcxcl 12684 pcneg 12698 pcabs 12699 pcgcd1 12701 pcz 12705 pcprmpw2 12706 pcprmpw 12707 dvdsprmpweqle 12710 difsqpwdvds 12711 pcaddlem 12712 pcadd 12713 pcmpt 12716 pockthg 12730 4sqlem2 12762 4sqlem4 12765 mul4sq 12767 mnd1id 13338 0subm 13366 mulgnn0p1 13519 mulgnn0ass 13544 dvreq1 13954 nzrunit 14000 rrgeq0 14077 domneq0 14084 lmodfopnelem2 14137 lss1d 14195 lspsneq0 14238 znidom 14469 znunit 14471 znrrg 14472 istopon 14535 eltg3 14579 tgidm 14596 restbasg 14690 tgrest 14691 tgcn 14730 cnconst 14756 lmss 14768 txbas 14780 txbasval 14789 upxp 14794 blssps 14949 blss 14950 metrest 15028 blssioo 15075 elcncf1di 15101 elply2 15257 plyf 15259 dvdsppwf1o 15511 perfectlem2 15522 perfect 15523 lgsmod 15553 lgsne0 15565 lgsdirnn0 15574 gausslemma2dlem1a 15585 gausslemma2dlem6 15594 lgseisenlem2 15598 lgsquadlem1 15604 lgsquadlem2 15605 2lgslem1b 15616 2sqlem2 15642 mul2sq 15643 2sqlem7 15648 lpvtx 15725 bj-peano4 16005 |
| Copyright terms: Public domain | W3C validator |