Proof of Theorem binom1dif
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 0zd 9338 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 0 ∈ ℤ) | 
| 2 |   | simpr 110 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) | 
| 3 | 2 | nn0zd 9446 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℤ) | 
| 4 |   | peano2zm 9364 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 5 | 3, 4 | syl 14 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑁 − 1) ∈
ℤ) | 
| 6 | 1, 5 | fzfigd 10523 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (0...(𝑁 − 1))
∈ Fin) | 
| 7 |   | fzssp1 10142 | 
. . . . . 6
⊢
(0...(𝑁 − 1))
⊆ (0...((𝑁 − 1)
+ 1)) | 
| 8 |   | nn0cn 9259 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) | 
| 9 | 8 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
ℂ) | 
| 10 |   | ax-1cn 7972 | 
. . . . . . . 8
⊢ 1 ∈
ℂ | 
| 11 |   | npcan 8235 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) | 
| 12 | 9, 10, 11 | sylancl 413 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝑁 − 1) + 1)
= 𝑁) | 
| 13 | 12 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (0...((𝑁 − 1)
+ 1)) = (0...𝑁)) | 
| 14 | 7, 13 | sseqtrid 3233 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (0...(𝑁 − 1))
⊆ (0...𝑁)) | 
| 15 | 14 | sselda 3183 | 
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁)) | 
| 16 |   | bccl2 10860 | 
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ) | 
| 17 | 16 | adantl 277 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ) | 
| 18 | 17 | nncnd 9004 | 
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) | 
| 19 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝐴 ∈
ℂ) | 
| 20 |   | elfznn0 10189 | 
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 21 |   | expcl 10649 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) | 
| 22 | 19, 20, 21 | syl2an 289 | 
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) ∈ ℂ) | 
| 23 | 18, 22 | mulcld 8047 | 
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (𝐴↑𝑘)) ∈ ℂ) | 
| 24 | 15, 23 | syldan 282 | 
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · (𝐴↑𝑘)) ∈ ℂ) | 
| 25 | 6, 24 | fsumcl 11565 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ Σ𝑘 ∈
(0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) ∈ ℂ) | 
| 26 |   | expcl 10649 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑𝑁) ∈
ℂ) | 
| 27 |   | addcom 8163 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 + 1) =
(1 + 𝐴)) | 
| 28 | 19, 10, 27 | sylancl 413 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝐴 + 1) = (1 + 𝐴)) | 
| 29 | 28 | oveq1d 5937 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 1)↑𝑁) = ((1 + 𝐴)↑𝑁)) | 
| 30 |   | binom1p 11650 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) | 
| 31 |   | nn0uz 9636 | 
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) | 
| 32 | 2, 31 | eleqtrdi 2289 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ 𝑁 ∈
(ℤ≥‘0)) | 
| 33 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁)) | 
| 34 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐴↑𝑘) = (𝐴↑𝑁)) | 
| 35 | 33, 34 | oveq12d 5940 | 
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝑁C𝑘) · (𝐴↑𝑘)) = ((𝑁C𝑁) · (𝐴↑𝑁))) | 
| 36 | 32, 23, 35 | fsumm1 11581 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) + ((𝑁C𝑁) · (𝐴↑𝑁)))) | 
| 37 |   | bcnn 10849 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁C𝑁) = 1) | 
| 38 | 37 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝑁C𝑁) = 1) | 
| 39 | 38 | oveq1d 5937 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝑁C𝑁) · (𝐴↑𝑁)) = (1 · (𝐴↑𝑁))) | 
| 40 | 26 | mulid2d 8045 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (1 · (𝐴↑𝑁)) = (𝐴↑𝑁)) | 
| 41 | 39, 40 | eqtrd 2229 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝑁C𝑁) · (𝐴↑𝑁)) = (𝐴↑𝑁)) | 
| 42 | 41 | oveq2d 5938 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (Σ𝑘 ∈
(0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) + ((𝑁C𝑁) · (𝐴↑𝑁))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) + (𝐴↑𝑁))) | 
| 43 | 36, 42 | eqtrd 2229 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ Σ𝑘 ∈
(0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) + (𝐴↑𝑁))) | 
| 44 | 29, 30, 43 | 3eqtrd 2233 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 1)↑𝑁) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘)) + (𝐴↑𝑁))) | 
| 45 | 25, 26, 44 | mvrraddd 8392 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) |