ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif GIF version

Theorem binom1dif 11848
Description: A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9397 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ)
2 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
32nn0zd 9506 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 peano2zm 9423 . . . . 5 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
53, 4syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ)
61, 5fzfigd 10589 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ∈ Fin)
7 fzssp1 10202 . . . . . 6 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
8 nn0cn 9318 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
98adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
10 ax-1cn 8031 . . . . . . . 8 1 ∈ ℂ
11 npcan 8294 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
129, 10, 11sylancl 413 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
1312oveq2d 5970 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
147, 13sseqtrid 3245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
1514sselda 3195 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
16 bccl2 10926 . . . . . . 7 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
1716adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ)
1817nncnd 9063 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
19 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
20 elfznn0 10249 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 10715 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2219, 20, 21syl2an 289 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2318, 22mulcld 8106 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
2415, 23syldan 282 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
256, 24fsumcl 11761 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
26 expcl 10715 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
27 addcom 8222 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2819, 10, 27sylancl 413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 + 1) = (1 + 𝐴))
2928oveq1d 5969 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = ((1 + 𝐴)↑𝑁))
30 binom1p 11846 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)))
31 nn0uz 9696 . . . . . 6 0 = (ℤ‘0)
322, 31eleqtrdi 2299 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
33 oveq2 5962 . . . . . 6 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
34 oveq2 5962 . . . . . 6 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
3533, 34oveq12d 5972 . . . . 5 (𝑘 = 𝑁 → ((𝑁C𝑘) · (𝐴𝑘)) = ((𝑁C𝑁) · (𝐴𝑁)))
3632, 23, 35fsumm1 11777 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))))
37 bcnn 10915 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
3837adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁C𝑁) = 1)
3938oveq1d 5969 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (1 · (𝐴𝑁)))
4026mulid2d 8104 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝐴𝑁)) = (𝐴𝑁))
4139, 40eqtrd 2239 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (𝐴𝑁))
4241oveq2d 5970 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4336, 42eqtrd 2239 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4429, 30, 433eqtrd 2243 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4525, 26, 44mvrraddd 8451 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5277  (class class class)co 5954  cc 7936  0cc0 7938  1c1 7939   + caddc 7941   · cmul 7943  cmin 8256  cn 9049  0cn0 9308  cz 9385  cuz 9661  ...cfz 10143  cexp 10696  Ccbc 10905  Σcsu 11714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-fac 10884  df-bc 10906  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator