ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif GIF version

Theorem binom1dif 11652
Description: A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9338 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ)
2 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
32nn0zd 9446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 peano2zm 9364 . . . . 5 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
53, 4syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ)
61, 5fzfigd 10523 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ∈ Fin)
7 fzssp1 10142 . . . . . 6 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
8 nn0cn 9259 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
98adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
10 ax-1cn 7972 . . . . . . . 8 1 ∈ ℂ
11 npcan 8235 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
129, 10, 11sylancl 413 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
1312oveq2d 5938 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
147, 13sseqtrid 3233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
1514sselda 3183 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
16 bccl2 10860 . . . . . . 7 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
1716adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ)
1817nncnd 9004 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
19 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
20 elfznn0 10189 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 10649 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2219, 20, 21syl2an 289 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2318, 22mulcld 8047 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
2415, 23syldan 282 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
256, 24fsumcl 11565 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) ∈ ℂ)
26 expcl 10649 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
27 addcom 8163 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
2819, 10, 27sylancl 413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 + 1) = (1 + 𝐴))
2928oveq1d 5937 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = ((1 + 𝐴)↑𝑁))
30 binom1p 11650 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)))
31 nn0uz 9636 . . . . . 6 0 = (ℤ‘0)
322, 31eleqtrdi 2289 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
33 oveq2 5930 . . . . . 6 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
34 oveq2 5930 . . . . . 6 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
3533, 34oveq12d 5940 . . . . 5 (𝑘 = 𝑁 → ((𝑁C𝑘) · (𝐴𝑘)) = ((𝑁C𝑁) · (𝐴𝑁)))
3632, 23, 35fsumm1 11581 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))))
37 bcnn 10849 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
3837adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁C𝑁) = 1)
3938oveq1d 5937 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (1 · (𝐴𝑁)))
4026mulid2d 8045 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝐴𝑁)) = (𝐴𝑁))
4139, 40eqtrd 2229 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁C𝑁) · (𝐴𝑁)) = (𝐴𝑁))
4241oveq2d 5938 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + ((𝑁C𝑁) · (𝐴𝑁))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4336, 42eqtrd 2229 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4429, 30, 433eqtrd 2233 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1)↑𝑁) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)) + (𝐴𝑁)))
4525, 26, 44mvrraddd 8392 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cmin 8197  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  cexp 10630  Ccbc 10839  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator