Theorem List for Intuitionistic Logic Explorer - 11401-11500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | fisumcom2 11401* |
Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘)
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) |
|
Theorem | fsumcom 11402* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) |
|
Theorem | fsum0diaglem 11403* |
Lemma for fisum0diag 11404. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
|
Theorem | fisum0diag 11404* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
|
Theorem | mptfzshft 11405* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
|
Theorem | fsumrev 11406* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
|
Theorem | fsumshft 11407* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
|
Theorem | fsumshftm 11408* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
|
Theorem | fisumrev2 11409* |
Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised
by Mario Carneiro, 13-Apr-2016.)
|
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
|
Theorem | fisum0diag2 11410* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴)
& ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶)
& ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |
|
Theorem | fsummulc2 11411* |
A finite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
|
Theorem | fsummulc1 11412* |
A finite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
|
Theorem | fsumdivapc 11413* |
A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) |
|
Theorem | fsumneg 11414* |
Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumsub 11415* |
Split a finite sum over a subtraction. (Contributed by Scott Fenton,
12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fsum2mul 11416* |
Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘).
(Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) |
|
Theorem | fsumconst 11417* |
The sum of constant terms (𝑘 is not free in 𝐵). (Contributed
by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
|
Theorem | fsumdifsnconst 11418* |
The sum of constant terms (𝑘 is not free in 𝐶) over an index
set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) |
|
Theorem | modfsummodlem1 11419* |
Lemma for modfsummod 11421. (Contributed by Alexander van der Vekens,
1-Sep-2018.)
|
⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
|
Theorem | modfsummodlemstep 11420* |
Induction step for modfsummod 11421. (Contributed by Alexander van der
Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴)
& ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
|
Theorem | modfsummod 11421* |
A finite sum modulo a positive integer equals the finite sum of their
summands modulo the positive integer, modulo the positive integer.
(Contributed by Alexander van der Vekens, 1-Sep-2018.)
|
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |
|
Theorem | fsumge0 11422* |
If all of the terms of a finite sum are nonnegative, so is the sum.
(Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumlessfi 11423* |
A shorter sum of nonnegative terms is no greater than a longer one.
(Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon,
12-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ⊆ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumge1 11424* |
A sum of nonnegative numbers is greater than or equal to any one of
its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof
shortened by Mario Carneiro, 4-Jun-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsum00 11425* |
A sum of nonnegative numbers is zero iff all terms are zero.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) |
|
Theorem | fsumle 11426* |
If all of the terms of finite sums compare, so do the sums.
(Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fsumlt 11427* |
If every term in one finite sum is less than the corresponding term in
another, then the first sum is less than the second. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fsumabs 11428* |
Generalized triangle inequality: the absolute value of a finite sum is
less than or equal to the sum of absolute values. (Contributed by NM,
9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
|
Theorem | telfsumo 11429* |
Sum of a telescoping series, using half-open intervals. (Contributed by
Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
|
Theorem | telfsumo2 11430* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
|
Theorem | telfsum 11431* |
Sum of a telescoping series. (Contributed by Scott Fenton,
24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
|
Theorem | telfsum2 11432* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
|
Theorem | fsumparts 11433* |
Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
|
⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
|
Theorem | fsumrelem 11434* |
Lemma for fsumre 11435, fsumim 11436, and fsumcj 11437. (Contributed by Mario
Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
|
Theorem | fsumre 11435* |
The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) |
|
Theorem | fsumim 11436* |
The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) |
|
Theorem | fsumcj 11437* |
The complex conjugate of a sum. (Contributed by Paul Chapman,
9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) |
|
Theorem | iserabs 11438* |
Generalized triangle inequality: the absolute value of an infinite sum
is less than or equal to the sum of absolute values. (Contributed by
Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
|
Theorem | cvgcmpub 11439* |
An upper bound for the limit of a real infinite series. This theorem
can also be used to compare two infinite series. (Contributed by Mario
Carneiro, 24-Mar-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
|
Theorem | fsumiun 11440* |
Sum over a disjoint indexed union. (Contributed by Mario Carneiro,
1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
|
Theorem | hashiun 11441* |
The cardinality of a disjoint indexed union. (Contributed by Mario
Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
|
Theorem | hash2iun 11442* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
|
Theorem | hash2iun1dif1 11443* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥})
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
|
Theorem | hashrabrex 11444* |
The number of elements in a class abstraction with a restricted
existential quantification. (Contributed by Alexander van der Vekens,
29-Jul-2018.)
|
⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) |
|
Theorem | hashuni 11445* |
The cardinality of a disjoint union. (Contributed by Mario Carneiro,
24-Jan-2015.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴)
= Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
|
4.8.3 The binomial theorem
|
|
Theorem | binomlem 11446* |
Lemma for binom 11447 (binomial theorem). Inductive step.
(Contributed by
NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
|
Theorem | binom 11447* |
The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to
𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem
15-2.8 of [Gleason] p. 296. This part
of the proof sets up the
induction and does the base case, with the bulk of the work (the
induction step) in binomlem 11446. This is Metamath 100 proof #44.
(Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
|
Theorem | binom1p 11448* |
Special case of the binomial theorem for (1 + 𝐴)↑𝑁.
(Contributed by Paul Chapman, 10-May-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 +
𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
|
Theorem | binom11 11449* |
Special case of the binomial theorem for 2↑𝑁. (Contributed by
Mario Carneiro, 13-Mar-2014.)
|
⊢ (𝑁 ∈ ℕ0 →
(2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
|
Theorem | binom1dif 11450* |
A summation for the difference between ((𝐴 + 1)↑𝑁) and
(𝐴↑𝑁). (Contributed by Scott Fenton,
9-Apr-2014.) (Revised by
Mario Carneiro, 22-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
(((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) |
|
Theorem | bcxmaslem1 11451 |
Lemma for bcxmas 11452. (Contributed by Paul Chapman,
18-May-2007.)
|
⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
|
Theorem | bcxmas 11452* |
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
(Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
|
4.8.4 Infinite sums (cont.)
|
|
Theorem | isumshft 11453* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |
|
Theorem | isumsplit 11454* |
Split off the first 𝑁 terms of an infinite sum.
(Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) |
|
Theorem | isum1p 11455* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
|
Theorem | isumnn0nn 11456* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝑘 = 0 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
|
Theorem | isumrpcl 11457* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈
ℝ+) |
|
Theorem | isumle 11458* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
|
Theorem | isumlessdc 11459* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
|
4.8.5 Miscellaneous converging and diverging
sequences
|
|
Theorem | divcnv 11460* |
The sequence of reciprocals of positive integers, multiplied by the
factor 𝐴, converges to zero. (Contributed by
NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) |
|
4.8.6 Arithmetic series
|
|
Theorem | arisum 11461* |
Arithmetic series sum of the first 𝑁 positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
|
Theorem | arisum2 11462* |
Arithmetic series sum of the first 𝑁 nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
|
Theorem | trireciplem 11463 |
Lemma for trirecip 11464. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 |
|
Theorem | trirecip 11464 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|
⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
|
4.8.7 Geometric series
|
|
Theorem | expcnvap0 11465* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | expcnvre 11466* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | expcnv 11467* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) <
1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | explecnv 11468* |
A sequence of terms converges to zero when it is less than powers of a
number 𝐴 whose absolute value is smaller than
1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
|
Theorem | geosergap 11469* |
The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +...
+ 𝐴↑(𝑁 − 1). (Contributed by Mario
Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
|
Theorem | geoserap 11470* |
The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +...
+ 𝐴↑(𝑁 − 1). This is Metamath 100
proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
|
Theorem | pwm1geoserap1 11471* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1).
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
|
Theorem | absltap 11472 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
|
Theorem | absgtap 11473 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
|
Theorem | geolim 11474* |
The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2...
converge to (1 / (1 − 𝐴)). (Contributed by NM,
15-May-2006.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) |
|
Theorem | geolim2 11475* |
The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)...
converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) |
|
Theorem | georeclim 11476* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
|
Theorem | geo2sum 11477* |
The value of the finite geometric series 2↑-1 + 2↑-2
+...
+ 2↑-𝑁, multiplied by a constant.
(Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
|
Theorem | geo2sum2 11478* |
The value of the finite geometric series 1 + 2 + 4 + 8
+...
+ 2↑(𝑁 − 1). (Contributed by Mario
Carneiro, 7-Sep-2016.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
|
Theorem | geo2lim 11479* |
The value of the infinite geometric series
2↑-1 + 2↑-2 +... , multiplied by a
constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) |
|
Theorem | geoisum 11480* |
The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 /
(1 − 𝐴)).
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0
(𝐴↑𝑘) = (1 / (1 − 𝐴))) |
|
Theorem | geoisumr 11481* |
The infinite sum of reciprocals
1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1).
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 1 <
(abs‘𝐴)) →
Σ𝑘 ∈
ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
|
Theorem | geoisum1 11482* |
The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)).
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
|
Theorem | geoisum1c 11483* |
The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is
(𝐴
· 𝑅) / (1 −
𝑅). (Contributed by
NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
|
Theorem | 0.999... 11484 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9
/ 10↑3
+ ..., is exactly equal to 1. (Contributed by NM,
2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|
⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
|
Theorem | geoihalfsum 11485 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 11482. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 11484 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|
⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
|
4.8.8 Ratio test for infinite series
convergence
|
|
Theorem | cvgratnnlembern 11486 |
Lemma for cvgratnn 11494. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |
|
Theorem | cvgratnnlemnexp 11487* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 15-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))) |
|
Theorem | cvgratnnlemmn 11488* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon,
15-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) |
|
Theorem | cvgratnnlemseq 11489* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |
|
Theorem | cvgratnnlemabsle 11490* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |
|
Theorem | cvgratnnlemsumlt 11491* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon,
23-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) < (𝐴 / (1 − 𝐴))) |
|
Theorem | cvgratnnlemfm 11492* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 23-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀)) |
|
Theorem | cvgratnnlemrate 11493* |
Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 21-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀)) |
|
Theorem | cvgratnn 11494* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite
sequence 𝐹 is less than 1 for all terms, then
the infinite sum of
the terms of 𝐹 converges to a complex number.
Although this
theorem is similar to cvgratz 11495 and cvgratgt0 11496, the decision to
index starting at one is not merely cosmetic, as proving convergence
using climcvg1n 11313 is sensitive to how a sequence is indexed.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
12-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
|
Theorem | cvgratz 11495* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite sequence
𝐹 is less than 1 for all terms, then
the infinite sum of the terms
of 𝐹 converges to a complex number.
(Contributed by NM,
26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
|
Theorem | cvgratgt0 11496* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite sequence
𝐹 is less than 1 for all terms beyond
some index 𝐵, then the
infinite sum of the terms of 𝐹 converges to a complex number.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
11-Nov-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
|
4.8.9 Mertens' theorem
|
|
Theorem | mertenslemub 11497* |
Lemma for mertensabs 11500. An upper bound for 𝑇. (Contributed by
Jim Kingdon, 3-Dec-2022.)
|
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
)
& ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜑 → 𝑋 ∈ 𝑇)
& ⊢ (𝜑 → 𝑆 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
|
Theorem | mertenslemi1 11498* |
Lemma for mertensabs 11500. (Contributed by Mario Carneiro,
29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))) & ⊢ (𝜑 → 0 ≤ 𝑃)
& ⊢ (𝜑 → ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
|
Theorem | mertenslem2 11499* |
Lemma for mertensabs 11500. (Contributed by Mario Carneiro,
28-Apr-2014.)
|
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
|
Theorem | mertensabs 11500* |
Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series
and
𝐵(𝑘) is convergent, then
(Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) =
Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and
this latter series is convergent). This latter sum is commonly known as
the Cauchy product of the sequences. The proof follows the outline at
http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem.
(Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |