HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvsumi 11401* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
𝑘𝐵    &   𝑗𝐶    &   (𝑗 = 𝑘𝐵 = 𝐶)       Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremsumeq1i 11402* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
𝐴 = 𝐵       Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
 
Theoremsumeq2i 11403* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
(𝑘𝐴𝐵 = 𝐶)       Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremsumeq12i 11404* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
𝐴 = 𝐵    &   (𝑘𝐴𝐶 = 𝐷)       Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷
 
Theoremsumeq1d 11405* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
(𝜑𝐴 = 𝐵)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremsumeq2d 11406* Equality deduction for sum. Note that unlike sumeq2dv 11407, 𝑘 may occur in 𝜑. (Contributed by NM, 1-Nov-2005.)
(𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2dv 11407* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝜑𝑘𝐴) → 𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2ad 11408* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2sdv 11409* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
(𝜑𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theorem2sumeq2dv 11410* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝜑𝑗𝐴𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐷)
 
Theoremsumeq12dv 11411* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 = 𝐷)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
 
Theoremsumeq12rdv 11412* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
 
Theoremsumfct 11413* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
(∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵)
 
Theoremfz1f1o 11414* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
 
Theoremnnf1o 11415 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
(𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐺:(1...𝑁)–1-1-onto𝐴)       (𝜑𝑁 = 𝑀)
 
Theoremsumrbdclem 11416* Lemma for sumrbdc 11418. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
Theoremfsum3cvg 11417* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremsumrbdc 11418* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
 
Theoremsummodclem3 11419* Lemma for summodc 11422. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))       (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
 
Theoremsummodclem2a 11420* Lemma for summodc 11422. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
 
Theoremsummodclem2 11421* Lemma for summodc 11422. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
 
Theoremsummodc 11422* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
 
Theoremzsumdc 11423* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑 → ∀𝑥𝑍 DECID 𝑥𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
 
Theoremisum 11424* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
 
Theoremfsumgcl 11425* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
 
Theoremfsum3 11426* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
 
Theoremsum0 11427 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Σ𝑘 ∈ ∅ 𝐴 = 0
 
Theoremisumz 11428* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
(((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
 
Theoremfsumf1o 11429* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
(𝑘 = 𝐺𝐵 = 𝐷)    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
 
Theoremisumss 11430* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐵 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremfisumss 11431* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremisumss2 11432* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐴𝐵)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)    &   (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
 
Theoremfsum3cvg2 11433* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsumsersdc 11434* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → Σ𝑘𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsum3cvg3 11435* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremfsum3ser 11436* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11451 and fsump1 11459, which should make our notation clear and from which, along with closure fsumcl 11439, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsumcl2lem 11437* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → Σ𝑘𝐴 𝐵𝑆)
 
Theoremfsumcllem 11438* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 0 ∈ 𝑆)       (𝜑 → Σ𝑘𝐴 𝐵𝑆)
 
Theoremfsumcl 11439* Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfsumrecl 11440* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfsumzcl 11441* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
 
Theoremfsumnn0cl 11442* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
 
Theoremfsumrpcl 11443* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ+)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ+)
 
Theoremfsumzcl2 11444* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
 
Theoremfsumadd 11445* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
 
Theoremfsumsplit 11446* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
 
Theoremfsumsplitf 11447* Split a sum into two parts. A version of fsumsplit 11446 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
 
Theoremsumsnf 11448* A sum of a singleton is the term. A version of sumsn 11450 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝐵    &   (𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremfsumsplitsn 11449* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝑉)    &   (𝜑 → ¬ 𝐵𝐴)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝑘 = 𝐵𝐶 = 𝐷)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
 
Theoremsumsn 11450* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremfsum1 11451* The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵)
 
Theoremsumpr 11452* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
(𝑘 = 𝐴𝐶 = 𝐷)    &   (𝑘 = 𝐵𝐶 = 𝐸)    &   (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))    &   (𝜑 → (𝐴𝑉𝐵𝑊))    &   (𝜑𝐴𝐵)       (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
 
Theoremsumtp 11453* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
(𝑘 = 𝐴𝐷 = 𝐸)    &   (𝑘 = 𝐵𝐷 = 𝐹)    &   (𝑘 = 𝐶𝐷 = 𝐺)    &   (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))    &   (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))    &   (𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
 
Theoremsumsns 11454* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
((𝑀𝑉𝑀 / 𝑘𝐴 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
 
Theoremfsumm1 11455* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑁𝐴 = 𝐵)       (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵))
 
Theoremfzosump1 11456* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑁𝐴 = 𝐵)       (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵))
 
Theoremfsum1p 11457* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑀𝐴 = 𝐵)       (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
 
Theoremfsumsplitsnun 11458* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
 
Theoremfsump1 11459* The addition of the next term in a finite sum of 𝐴(𝑘) is the current term plus 𝐵 i.e. 𝐴(𝑁 + 1). (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)       (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝑁)𝐴 + 𝐵))
 
Theoremisumclim 11460* An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵)       (𝜑 → Σ𝑘𝑍 𝐴 = 𝐵)
 
Theoremisumclim2 11461* A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
 
Theoremisumclim3 11462* The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 ∈ dom ⇝ )    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)       (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
 
Theoremsumnul 11463* The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 = ∅)
 
Theoremisumcl 11464* The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℂ)
 
Theoremisummulc2 11465* An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
 
Theoremisummulc1 11466* An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (Σ𝑘𝑍 𝐴 · 𝐵) = Σ𝑘𝑍 (𝐴 · 𝐵))
 
Theoremisumdivapc 11467* An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (Σ𝑘𝑍 𝐴 / 𝐵) = Σ𝑘𝑍 (𝐴 / 𝐵))
 
Theoremisumrecl 11468* The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℝ)
 
Theoremisumge0 11469* An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   ((𝜑𝑘𝑍) → 0 ≤ 𝐴)       (𝜑 → 0 ≤ Σ𝑘𝑍 𝐴)
 
Theoremisumadd 11470* Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
 
Theoremsumsplitdc 11471* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑 → (𝐴𝐵) ⊆ 𝑍)    &   ((𝜑𝑘𝑍) → DECID 𝑘𝐴)    &   ((𝜑𝑘𝑍) → DECID 𝑘𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))    &   ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )       (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
 
Theoremfsump1i 11472* Optimized version of fsump1 11459 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
𝑍 = (ℤ𝑀)    &   𝑁 = (𝐾 + 1)    &   (𝑘 = 𝑁𝐴 = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))    &   (𝜑 → (𝑆 + 𝐵) = 𝑇)       (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
 
Theoremfsum2dlemstep 11473* Lemma for fsum2d 11474- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)    &   (𝜑 → ¬ 𝑦𝑥)    &   (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)    &   (𝜑𝑥 ∈ Fin)    &   (𝜓 ↔ Σ𝑗𝑥 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)       ((𝜑𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
 
Theoremfsum2d 11474* Write a double sum as a sum over a two-dimensional region. Note that 𝐵(𝑗) is a function of 𝑗. (Contributed by Mario Carneiro, 27-Apr-2014.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
 
Theoremfsumxp 11475* Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷)
 
Theoremfsumcnv 11476* Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
(𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)    &   (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → Rel 𝐴)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
 
Theoremfisumcom2 11477* Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑𝑘𝐶) → 𝐷 ∈ Fin)    &   (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑘𝐶 Σ𝑗𝐷 𝐸)
 
Theoremfsumcom 11478* Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑘𝐵 Σ𝑗𝐴 𝐶)
 
Theoremfsum0diaglem 11479* Lemma for fisum0diag 11480. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁𝑘))))
 
Theoremfisum0diag 11480* Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 𝑀𝑗, 𝑀𝑘, 𝑗 + 𝑘𝑁". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑘))𝐴)
 
Theoremmptfzshft 11481* 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
 
Theoremfsumrev 11482* Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
 
Theoremfsumshft 11483* Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝑘𝐾) → 𝐴 = 𝐵)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
 
Theoremfsumshftm 11484* Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
 
Theoremfisumrev2 11485* Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremfisum0diag2 11486* Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘𝑁". (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝑥 = 𝑘𝐵 = 𝐴)    &   (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)    &   ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
 
Theoremfsummulc2 11487* A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
 
Theoremfsummulc1 11488* A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
 
Theoremfsumdivapc 11489* A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → (Σ𝑘𝐴 𝐵 / 𝐶) = Σ𝑘𝐴 (𝐵 / 𝐶))
 
Theoremfsumneg 11490* Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 -𝐵 = -Σ𝑘𝐴 𝐵)
 
Theoremfsumsub 11491* Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 (𝐵𝐶) = (Σ𝑘𝐴 𝐵 − Σ𝑘𝐴 𝐶))
 
Theoremfsum2mul 11492* Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐵) → 𝐷 ∈ ℂ)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 (𝐶 · 𝐷) = (Σ𝑗𝐴 𝐶 · Σ𝑘𝐵 𝐷))
 
Theoremfsumconst 11493* The sum of constant terms (𝑘 is not free in 𝐵). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘𝐴 𝐵 = ((♯‘𝐴) · 𝐵))
 
Theoremfsumdifsnconst 11494* The sum of constant terms (𝑘 is not free in 𝐶) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶))
 
Theoremmodfsummodlem1 11495* Lemma for modfsummod 11497. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
(∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
 
Theoremmodfsummodlemstep 11496* Induction step for modfsummod 11497. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)    &   (𝜑 → ¬ 𝑧𝐴)    &   (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))       (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
 
Theoremmodfsummod 11497* A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)       (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
 
Theoremfsumge0 11498* If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)       (𝜑 → 0 ≤ Σ𝑘𝐴 𝐵)
 
Theoremfsumlessfi 11499* A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
 
Theoremfsumge1 11500* A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝑘 = 𝑀𝐵 = 𝐶)    &   (𝜑𝑀𝐴)       (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15286
  Copyright terms: Public domain < Previous  Next >