Theorem List for Intuitionistic Logic Explorer - 11401-11500 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | isummulc1 11401* |
An infinite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 · 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 · 𝐵)) |
|
Theorem | isumdivapc 11402* |
An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝑍 𝐴 / 𝐵) = Σ𝑘 ∈ 𝑍 (𝐴 / 𝐵)) |
|
Theorem | isumrecl 11403* |
The sum of a converging infinite real series is a real number.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℝ) |
|
Theorem | isumge0 11404* |
An infinite sum of nonnegative terms is nonnegative. (Contributed by
Mario Carneiro, 28-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝑍 𝐴) |
|
Theorem | isumadd 11405* |
Addition of infinite sums. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
|
Theorem | sumsplitdc 11406* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → DECID 𝑘 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
|
Theorem | fsump1i 11407* |
Optimized version of fsump1 11394 for making sums of a concrete number of
terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑁 = (𝐾 + 1) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) & ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
|
Theorem | fsum2dlemstep 11408* |
Lemma for fsum2d 11409- induction step. (Contributed by Mario
Carneiro,
23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥)
& ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
& ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |
|
Theorem | fsum2d 11409* |
Write a double sum as a sum over a two-dimensional region. Note that
𝐵(𝑗) is a function of 𝑗.
(Contributed by Mario Carneiro,
27-Apr-2014.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
|
Theorem | fsumxp 11410* |
Combine two sums into a single sum over the cartesian product.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ (𝐴 × 𝐵)𝐷) |
|
Theorem | fsumcnv 11411* |
Transform a region of summation by using the converse operation.
(Contributed by Mario Carneiro, 23-Apr-2014.)
|
⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑦 ∈ ◡ 𝐴𝐶) |
|
Theorem | fisumcom2 11412* |
Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘)
are not necessarily constant expressions. (Contributed by Mario
Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
(Proof shortened by JJ, 2-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐸 = Σ𝑘 ∈ 𝐶 Σ𝑗 ∈ 𝐷 𝐸) |
|
Theorem | fsumcom 11413* |
Interchange order of summation. (Contributed by NM, 15-Nov-2005.)
(Revised by Mario Carneiro, 23-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝐵 Σ𝑗 ∈ 𝐴 𝐶) |
|
Theorem | fsum0diaglem 11414* |
Lemma for fisum0diag 11415. (Contributed by Mario Carneiro,
28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
|
Theorem | fisum0diag 11415* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by NM,
31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
(Revised by Mario Carneiro, 8-Apr-2016.)
|
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
|
Theorem | mptfzshft 11416* |
1-1 onto function in maps-to notation which shifts a finite set of
sequential integers. (Contributed by AV, 24-Aug-2019.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝑗 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑗 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
|
Theorem | fsumrev 11417* |
Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised
by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
|
Theorem | fsumshft 11418* |
Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.)
(Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV,
8-Sep-2019.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
|
Theorem | fsumshftm 11419* |
Negative index shift of a finite sum. (Contributed by NM,
28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾))𝐵) |
|
Theorem | fisumrev2 11420* |
Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised
by Mario Carneiro, 13-Apr-2016.)
|
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
|
Theorem | fisum0diag2 11421* |
Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular
region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁". (Contributed by
Mario Carneiro, 21-Jul-2014.)
|
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴)
& ⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶)
& ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |
|
Theorem | fsummulc2 11422* |
A finite sum multiplied by a constant. (Contributed by NM,
12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
|
Theorem | fsummulc1 11423* |
A finite sum multiplied by a constant. (Contributed by NM,
13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
|
Theorem | fsumdivapc 11424* |
A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 / 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝐶)) |
|
Theorem | fsumneg 11425* |
Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.)
(Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 -𝐵 = -Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumsub 11426* |
Split a finite sum over a subtraction. (Contributed by Scott Fenton,
12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 − 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 − Σ𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fsum2mul 11427* |
Separate the nested sum of the product 𝐶(𝑗) · 𝐷(𝑘).
(Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 (𝐶 · 𝐷) = (Σ𝑗 ∈ 𝐴 𝐶 · Σ𝑘 ∈ 𝐵 𝐷)) |
|
Theorem | fsumconst 11428* |
The sum of constant terms (𝑘 is not free in 𝐵). (Contributed
by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((♯‘𝐴) · 𝐵)) |
|
Theorem | fsumdifsnconst 11429* |
The sum of constant terms (𝑘 is not free in 𝐶) over an index
set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → Σ𝑘 ∈ (𝐴 ∖ {𝐵})𝐶 = (((♯‘𝐴) − 1) · 𝐶)) |
|
Theorem | modfsummodlem1 11430* |
Lemma for modfsummod 11432. (Contributed by Alexander van der Vekens,
1-Sep-2018.)
|
⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
|
Theorem | modfsummodlemstep 11431* |
Induction step for modfsummod 11432. (Contributed by Alexander van der
Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴)
& ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
|
Theorem | modfsummod 11432* |
A finite sum modulo a positive integer equals the finite sum of their
summands modulo the positive integer, modulo the positive integer.
(Contributed by Alexander van der Vekens, 1-Sep-2018.)
|
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |
|
Theorem | fsumge0 11433* |
If all of the terms of a finite sum are nonnegative, so is the sum.
(Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumlessfi 11434* |
A shorter sum of nonnegative terms is no greater than a longer one.
(Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon,
12-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝜑 → 𝐶 ⊆ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsumge1 11435* |
A sum of nonnegative numbers is greater than or equal to any one of
its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof
shortened by Mario Carneiro, 4-Jun-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ (𝑘 = 𝑀 → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fsum00 11436* |
A sum of nonnegative numbers is zero iff all terms are zero.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀𝑘 ∈ 𝐴 𝐵 = 0)) |
|
Theorem | fsumle 11437* |
If all of the terms of finite sums compare, so do the sums.
(Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fsumlt 11438* |
If every term in one finite sum is less than the corresponding term in
another, then the first sum is less than the second. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fsumabs 11439* |
Generalized triangle inequality: the absolute value of a finite sum is
less than or equal to the sum of absolute values. (Contributed by NM,
9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (abs‘𝐵)) |
|
Theorem | telfsumo 11440* |
Sum of a telescoping series, using half-open intervals. (Contributed by
Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
|
Theorem | telfsumo2 11441* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
|
Theorem | telfsum 11442* |
Sum of a telescoping series. (Contributed by Scott Fenton,
24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
|
Theorem | telfsum2 11443* |
Sum of a telescoping series. (Contributed by Mario Carneiro,
15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
|
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵)
& ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷)
& ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
& ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
|
Theorem | fsumparts 11444* |
Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
|
⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) & ⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) & ⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) & ⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
|
Theorem | fsumrelem 11445* |
Lemma for fsumre 11446, fsumim 11447, and fsumcj 11448. (Contributed by Mario
Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
|
Theorem | fsumre 11446* |
The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℜ‘𝐵)) |
|
Theorem | fsumim 11447* |
The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.)
(Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℑ‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (ℑ‘𝐵)) |
|
Theorem | fsumcj 11448* |
The complex conjugate of a sum. (Contributed by Paul Chapman,
9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (∗‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (∗‘𝐵)) |
|
Theorem | iserabs 11449* |
Generalized triangle inequality: the absolute value of an infinite sum
is less than or equal to the sum of absolute values. (Contributed by
Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
|
Theorem | cvgcmpub 11450* |
An upper bound for the limit of a real infinite series. This theorem
can also be used to compare two infinite series. (Contributed by Mario
Carneiro, 24-Mar-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
|
Theorem | fsumiun 11451* |
Sum over a disjoint indexed union. (Contributed by Mario Carneiro,
1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
|
Theorem | hashiun 11452* |
The cardinality of a disjoint indexed union. (Contributed by Mario
Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
|
Theorem | hash2iun 11453* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
|
Theorem | hash2iun1dif1 11454* |
The cardinality of a nested disjoint indexed union. (Contributed by AV,
9-Jan-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ 𝐵 = (𝐴 ∖ {𝑥})
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) ⇒ ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
|
Theorem | hashrabrex 11455* |
The number of elements in a class abstraction with a restricted
existential quantification. (Contributed by Alexander van der Vekens,
29-Jul-2018.)
|
⊢ (𝜑 → 𝑌 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → {𝑥 ∈ 𝑋 ∣ 𝜓} ∈ Fin) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 {𝑥 ∈ 𝑋 ∣ 𝜓}) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 𝜓}) = Σ𝑦 ∈ 𝑌 (♯‘{𝑥 ∈ 𝑋 ∣ 𝜓})) |
|
Theorem | hashuni 11456* |
The cardinality of a disjoint union. (Contributed by Mario Carneiro,
24-Jan-2015.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴)
= Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
|
4.8.3 The binomial theorem
|
|
Theorem | binomlem 11457* |
Lemma for binom 11458 (binomial theorem). Inductive step.
(Contributed by
NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
|
Theorem | binom 11458* |
The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to
𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem
15-2.8 of [Gleason] p. 296. This part
of the proof sets up the
induction and does the base case, with the bulk of the work (the
induction step) in binomlem 11457. This is Metamath 100 proof #44.
(Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
|
Theorem | binom1p 11459* |
Special case of the binomial theorem for (1 + 𝐴)↑𝑁.
(Contributed by Paul Chapman, 10-May-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 +
𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
|
Theorem | binom11 11460* |
Special case of the binomial theorem for 2↑𝑁. (Contributed by
Mario Carneiro, 13-Mar-2014.)
|
⊢ (𝑁 ∈ ℕ0 →
(2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
|
Theorem | binom1dif 11461* |
A summation for the difference between ((𝐴 + 1)↑𝑁) and
(𝐴↑𝑁). (Contributed by Scott Fenton,
9-Apr-2014.) (Revised by
Mario Carneiro, 22-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
(((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) |
|
Theorem | bcxmaslem1 11462 |
Lemma for bcxmas 11463. (Contributed by Paul Chapman,
18-May-2007.)
|
⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
|
Theorem | bcxmas 11463* |
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
(Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
|
4.8.4 Infinite sums (cont.)
|
|
Theorem | isumshft 11464* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |
|
Theorem | isumsplit 11465* |
Split off the first 𝑁 terms of an infinite sum.
(Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) |
|
Theorem | isum1p 11466* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
|
Theorem | isumnn0nn 11467* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ (𝑘 = 0 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
|
Theorem | isumrpcl 11468* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈
ℝ+) |
|
Theorem | isumle 11469* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
|
Theorem | isumlessdc 11470* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
|
4.8.5 Miscellaneous converging and diverging
sequences
|
|
Theorem | divcnv 11471* |
The sequence of reciprocals of positive integers, multiplied by the
factor 𝐴, converges to zero. (Contributed by
NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) |
|
4.8.6 Arithmetic series
|
|
Theorem | arisum 11472* |
Arithmetic series sum of the first 𝑁 positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
|
Theorem | arisum2 11473* |
Arithmetic series sum of the first 𝑁 nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
|
Theorem | trireciplem 11474 |
Lemma for trirecip 11475. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 |
|
Theorem | trirecip 11475 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|
⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
|
4.8.7 Geometric series
|
|
Theorem | expcnvap0 11476* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | expcnvre 11477* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | expcnv 11478* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) <
1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
|
Theorem | explecnv 11479* |
A sequence of terms converges to zero when it is less than powers of a
number 𝐴 whose absolute value is smaller than
1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
|
Theorem | geosergap 11480* |
The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +...
+ 𝐴↑(𝑁 − 1). (Contributed by Mario
Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
|
Theorem | geoserap 11481* |
The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +...
+ 𝐴↑(𝑁 − 1). This is Metamath 100
proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
|
Theorem | pwm1geoserap1 11482* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1).
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
|
Theorem | absltap 11483 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
|
Theorem | absgtap 11484 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
|
Theorem | geolim 11485* |
The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2...
converge to (1 / (1 − 𝐴)). (Contributed by NM,
15-May-2006.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) |
|
Theorem | geolim2 11486* |
The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)...
converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) |
|
Theorem | georeclim 11487* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
|
Theorem | geo2sum 11488* |
The value of the finite geometric series 2↑-1 + 2↑-2
+...
+ 2↑-𝑁, multiplied by a constant.
(Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
|
Theorem | geo2sum2 11489* |
The value of the finite geometric series 1 + 2 + 4 + 8
+...
+ 2↑(𝑁 − 1). (Contributed by Mario
Carneiro, 7-Sep-2016.)
|
⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
|
Theorem | geo2lim 11490* |
The value of the infinite geometric series
2↑-1 + 2↑-2 +... , multiplied by a
constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) |
|
Theorem | geoisum 11491* |
The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 /
(1 − 𝐴)).
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0
(𝐴↑𝑘) = (1 / (1 − 𝐴))) |
|
Theorem | geoisumr 11492* |
The infinite sum of reciprocals
1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1).
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 1 <
(abs‘𝐴)) →
Σ𝑘 ∈
ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
|
Theorem | geoisum1 11493* |
The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)).
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
|
Theorem | geoisum1c 11494* |
The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is
(𝐴
· 𝑅) / (1 −
𝑅). (Contributed by
NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
|
Theorem | 0.999... 11495 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9
/ 10↑3
+ ..., is exactly equal to 1. (Contributed by NM,
2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|
⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
|
Theorem | geoihalfsum 11496 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 11493. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 11495 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|
⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
|
4.8.8 Ratio test for infinite series
convergence
|
|
Theorem | cvgratnnlembern 11497 |
Lemma for cvgratnn 11505. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |
|
Theorem | cvgratnnlemnexp 11498* |
Lemma for cvgratnn 11505. (Contributed by Jim Kingdon, 15-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))) |
|
Theorem | cvgratnnlemmn 11499* |
Lemma for cvgratnn 11505. (Contributed by Jim Kingdon,
15-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) |
|
Theorem | cvgratnnlemseq 11500* |
Lemma for cvgratnn 11505. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |