HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcjre 11401 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
 
Theoremcjcj 11402 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
 
Theoremcjadd 11403 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmul 11404 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnval 11405 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjmulrcl 11406 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
 
Theoremcjmulval 11407 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremcjmulge0 11408 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
 
Theoremcjneg 11409 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
 
Theoremaddcj 11410 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)))
 
Theoremcjsub 11411 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
 
Theoremcjexp 11412 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 
Theoremimval2 11413 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
 
Theoremre0 11414 The real part of zero. (Contributed by NM, 27-Jul-1999.)
(ℜ‘0) = 0
 
Theoremim0 11415 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
(ℑ‘0) = 0
 
Theoremre1 11416 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘1) = 1
 
Theoremim1 11417 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘1) = 0
 
Theoremrei 11418 The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘i) = 0
 
Theoremimi 11419 The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘i) = 1
 
Theoremcj0 11420 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
(∗‘0) = 0
 
Theoremcji 11421 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
(∗‘i) = -i
 
Theoremcjreim 11422 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
 
Theoremcjreim2 11423 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵)))
 
Theoremcj11 11424 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremcjap 11425 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
 
Theoremcjap0 11426 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0))
 
Theoremcjne0 11427 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 11426 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
(𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
 
Theoremcjdivap 11428 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcnrecnv 11429* The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9854. (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
 
Theoremrecli 11430 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ∈ ℝ
 
Theoremimcli 11431 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℑ‘𝐴) ∈ ℝ
 
Theoremcjcli 11432 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘𝐴) ∈ ℂ
 
Theoremreplimi 11433 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))
 
Theoremcjcji 11434 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘(∗‘𝐴)) = 𝐴
 
Theoremreim0bi 11435 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)
 
Theoremrerebi 11436 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)
 
Theoremcjrebi 11437 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)
 
Theoremrecji 11438 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)
 
Theoremimcji 11439 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)
 
Theoremcjmulrcli 11440 A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) ∈ ℝ
 
Theoremcjmulvali 11441 A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))
 
Theoremcjmulge0i 11442 A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.)
𝐴 ∈ ℂ       0 ≤ (𝐴 · (∗‘𝐴))
 
Theoremrenegi 11443 Real part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℜ‘-𝐴) = -(ℜ‘𝐴)
 
Theoremimnegi 11444 Imaginary part of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (ℑ‘-𝐴) = -(ℑ‘𝐴)
 
Theoremcjnegi 11445 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (∗‘-𝐴) = -(∗‘𝐴)
 
Theoremaddcji 11446 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))
 
Theoremreaddi 11447 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))
 
Theoremimaddi 11448 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))
 
Theoremremuli 11449 Real part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremimmuli 11450 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))
 
Theoremcjaddi 11451 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))
 
Theoremcjmuli 11452 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))
 
Theoremipcni 11453 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))
 
Theoremcjdivapi 11454 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcrrei 11455 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴
 
Theoremcrimi 11456 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵
 
Theoremrecld 11457 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcld 11458 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘𝐴) ∈ ℝ)
 
Theoremcjcld 11459 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘𝐴) ∈ ℂ)
 
Theoremreplimd 11460 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
 
Theoremremimd 11461 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
 
Theoremcjcjd 11462 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘(∗‘𝐴)) = 𝐴)
 
Theoremreim0bd 11463 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (ℑ‘𝐴) = 0)       (𝜑𝐴 ∈ ℝ)
 
Theoremrerebd 11464 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (ℜ‘𝐴) = 𝐴)       (𝜑𝐴 ∈ ℝ)
 
Theoremcjrebd 11465 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (∗‘𝐴) = 𝐴)       (𝜑𝐴 ∈ ℝ)
 
Theoremcjne0d 11466 A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 11467 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (∗‘𝐴) ≠ 0)
 
Theoremcjap0d 11467 A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (∗‘𝐴) # 0)
 
Theoremrecjd 11468 Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
 
Theoremimcjd 11469 Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
 
Theoremcjmulrcld 11470 A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ)
 
Theoremcjmulvald 11471 A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremcjmulge0d 11472 A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴)))
 
Theoremrenegd 11473 Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴))
 
Theoremimnegd 11474 Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴))
 
Theoremcjnegd 11475 Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (∗‘-𝐴) = -(∗‘𝐴))
 
Theoremaddcjd 11476 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)))
 
Theoremcjexpd 11477 Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 
Theoremreaddd 11478 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremimaddd 11479 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremresubd 11480 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremimsubd 11481 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremremuld 11482 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremimmuld 11483 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremcjaddd 11484 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmuld 11485 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnd 11486 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjdivapd 11487 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremrered 11488 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℜ‘𝐴) = 𝐴)
 
Theoremreim0d 11489 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (ℑ‘𝐴) = 0)
 
Theoremcjred 11490 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (∗‘𝐴) = 𝐴)
 
Theoremremul2d 11491 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremimmul2d 11492 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremredivapd 11493 Real part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴))
 
Theoremimdivapd 11494 Imaginary part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
 
Theoremcrred 11495 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrimd 11496 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremcnreim 11497 Complex apartness in terms of real and imaginary parts. See also apreim 8758 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
 
4.8.3  Sequence convergence
 
Theoremcaucvgrelemrec 11498* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴))
 
Theoremcaucvgrelemcau 11499* Lemma for caucvgre 11500. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
 
Theoremcaucvgre 11500* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >