| Intuitionistic Logic Explorer Theorem List (p. 115 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cjre 11401 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | ||
| Theorem | cjcj 11402 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | cjadd 11403 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmul 11404 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnval 11405 | Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjmulrcl 11406 | A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulval 11407 | A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0 11408 | A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | cjneg 11409 | Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcj 11410 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjsub 11411 | Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
| Theorem | cjexp 11412 | Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | imval2 11413 | The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | ||
| Theorem | re0 11414 | The real part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℜ‘0) = 0 | ||
| Theorem | im0 11415 | The imaginary part of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (ℑ‘0) = 0 | ||
| Theorem | re1 11416 | The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘1) = 1 | ||
| Theorem | im1 11417 | The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘1) = 0 | ||
| Theorem | rei 11418 | The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℜ‘i) = 0 | ||
| Theorem | imi 11419 | The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| ⊢ (ℑ‘i) = 1 | ||
| Theorem | cj0 11420 | The conjugate of zero. (Contributed by NM, 27-Jul-1999.) |
| ⊢ (∗‘0) = 0 | ||
| Theorem | cji 11421 | The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
| ⊢ (∗‘i) = -i | ||
| Theorem | cjreim 11422 | The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) | ||
| Theorem | cjreim2 11423 | The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵))) | ||
| Theorem | cj11 11424 | Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | cjap 11425 | Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵)) | ||
| Theorem | cjap0 11426 | A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0)) | ||
| Theorem | cjne0 11427 | A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 11426 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0)) | ||
| Theorem | cjdivap 11428 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | cnrecnv 11429* | The inverse to the canonical bijection from (ℝ × ℝ) to ℂ from cnref1o 9854. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) | ||
| Theorem | recli 11430 | The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘𝐴) ∈ ℝ | ||
| Theorem | imcli 11431 | The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘𝐴) ∈ ℝ | ||
| Theorem | cjcli 11432 | Closure law for complex conjugate. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘𝐴) ∈ ℂ | ||
| Theorem | replimi 11433 | Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) | ||
| Theorem | cjcji 11434 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘(∗‘𝐴)) = 𝐴 | ||
| Theorem | reim0bi 11435 | A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0) | ||
| Theorem | rerebi 11436 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴) | ||
| Theorem | cjrebi 11437 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴) | ||
| Theorem | recji 11438 | Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴) | ||
| Theorem | imcji 11439 | Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴) | ||
| Theorem | cjmulrcli 11440 | A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) ∈ ℝ | ||
| Theorem | cjmulvali 11441 | A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
| Theorem | cjmulge0i 11442 | A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (𝐴 · (∗‘𝐴)) | ||
| Theorem | renegi 11443 | Real part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘-𝐴) = -(ℜ‘𝐴) | ||
| Theorem | imnegi 11444 | Imaginary part of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℑ‘-𝐴) = -(ℑ‘𝐴) | ||
| Theorem | cjnegi 11445 | Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (∗‘-𝐴) = -(∗‘𝐴) | ||
| Theorem | addcji 11446 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)) | ||
| Theorem | readdi 11447 | Real part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)) | ||
| Theorem | imaddi 11448 | Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)) | ||
| Theorem | remuli 11449 | Real part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | immuli 11450 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) | ||
| Theorem | cjaddi 11451 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)) | ||
| Theorem | cjmuli 11452 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)) | ||
| Theorem | ipcni 11453 | Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))) | ||
| Theorem | cjdivapi 11454 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | crrei 11455 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴 | ||
| Theorem | crimi 11456 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵 | ||
| Theorem | recld 11457 | The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) | ||
| Theorem | imcld 11458 | The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) | ||
| Theorem | cjcld 11459 | Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) | ||
| Theorem | replimd 11460 | Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
| Theorem | remimd 11461 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
| Theorem | cjcjd 11462 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | reim0bd 11463 | A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℑ‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | rerebd 11464 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjrebd 11465 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (∗‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjne0d 11466 | A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 11467 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) ≠ 0) | ||
| Theorem | cjap0d 11467 | A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) # 0) | ||
| Theorem | recjd 11468 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | imcjd 11469 | Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | cjmulrcld 11470 | A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulvald 11471 | A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0d 11472 | A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | renegd 11473 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | imnegd 11474 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | cjnegd 11475 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcjd 11476 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjexpd 11477 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | readdd 11478 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | imaddd 11479 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | resubd 11480 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| Theorem | imsubd 11481 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | remuld 11482 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | immuld 11483 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | cjaddd 11484 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmuld 11485 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnd 11486 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjdivapd 11487 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | rered 11488 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | reim0d 11489 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
| Theorem | cjred 11490 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
| Theorem | remul2d 11491 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| Theorem | immul2d 11492 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
| Theorem | redivapd 11493 | Real part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
| Theorem | imdivapd 11494 | Imaginary part of a division. Related to remul2 11392. (Contributed by Jim Kingdon, 15-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
| Theorem | crred 11495 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crimd 11496 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Theorem | cnreim 11497 | Complex apartness in terms of real and imaginary parts. See also apreim 8758 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)))) | ||
| Theorem | caucvgrelemrec 11498* | Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (℩𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴)) | ||
| Theorem | caucvgrelemcau 11499* | Lemma for caucvgre 11500. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | ||
| Theorem | caucvgre 11500* |
Convergence of real sequences.
A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 19-Jul-2021.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |