HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfsumlessfi 11401* A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
 
Theoremfsumge1 11402* A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝑘 = 𝑀𝐵 = 𝐶)    &   (𝜑𝑀𝐴)       (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
 
Theoremfsum00 11403* A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)       (𝜑 → (Σ𝑘𝐴 𝐵 = 0 ↔ ∀𝑘𝐴 𝐵 = 0))
 
Theoremfsumle 11404* If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐵𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝐴 𝐶)
 
Theoremfsumlt 11405* If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐵 < 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
 
Theoremfsumabs 11406* Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (abs‘Σ𝑘𝐴 𝐵) ≤ Σ𝑘𝐴 (abs‘𝐵))
 
Theoremtelfsumo 11407* Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
(𝑘 = 𝑗𝐴 = 𝐵)    &   (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 𝑀𝐴 = 𝐷)    &   (𝑘 = 𝑁𝐴 = 𝐸)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
 
Theoremtelfsumo2 11408* Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
(𝑘 = 𝑗𝐴 = 𝐵)    &   (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 𝑀𝐴 = 𝐷)    &   (𝑘 = 𝑁𝐴 = 𝐸)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
 
Theoremtelfsum 11409* Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
(𝑘 = 𝑗𝐴 = 𝐵)    &   (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 𝑀𝐴 = 𝐷)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐵𝐶) = (𝐷𝐸))
 
Theoremtelfsum2 11410* Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
(𝑘 = 𝑗𝐴 = 𝐵)    &   (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)    &   (𝑘 = 𝑀𝐴 = 𝐷)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
 
Theoremfsumparts 11411* Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
(𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))    &   (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))    &   (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))    &   (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)       (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
 
Theoremfsumrelem 11412* Lemma for fsumre 11413, fsumim 11414, and fsumcj 11415. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐹:ℂ⟶ℂ    &   ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))       (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
 
Theoremfsumre 11413* The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (ℜ‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (ℜ‘𝐵))
 
Theoremfsumim 11414* The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (ℑ‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (ℑ‘𝐵))
 
Theoremfsumcj 11415* The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (∗‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (∗‘𝐵))
 
Theoremiserabs 11416* Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑 → (abs‘𝐴) ≤ 𝐵)
 
Theoremcvgcmpub 11417* An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))       (𝜑𝐵𝐴)
 
Theoremfsumiun 11418* Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝐵)    &   ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
 
Theoremhashiun 11419* The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝐵)       (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
 
Theoremhash2iun 11420* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)       (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
 
Theoremhash2iun1dif1 11421* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
(𝜑𝐴 ∈ Fin)    &   𝐵 = (𝐴 ∖ {𝑥})    &   ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)    &   (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)    &   ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)       (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
 
Theoremhashrabrex 11422* The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018.)
(𝜑𝑌 ∈ Fin)    &   ((𝜑𝑦𝑌) → {𝑥𝑋𝜓} ∈ Fin)    &   (𝜑Disj 𝑦𝑌 {𝑥𝑋𝜓})       (𝜑 → (♯‘{𝑥𝑋 ∣ ∃𝑦𝑌 𝜓}) = Σ𝑦𝑌 (♯‘{𝑥𝑋𝜓}))
 
Theoremhashuni 11423* The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ⊆ Fin)    &   (𝜑Disj 𝑥𝐴 𝑥)       (𝜑 → (♯‘ 𝐴) = Σ𝑥𝐴 (♯‘𝑥))
 
4.8.3  The binomial theorem
 
Theorembinomlem 11424* Lemma for binom 11425 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))       ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
 
Theorembinom 11425* The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11424. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
 
Theorembinom1p 11426* Special case of the binomial theorem for (1 + 𝐴)↑𝑁. (Contributed by Paul Chapman, 10-May-2007.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴𝑘)))
 
Theorembinom11 11427* Special case of the binomial theorem for 2↑𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.)
(𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘))
 
Theorembinom1dif 11428* A summation for the difference between ((𝐴 + 1)↑𝑁) and (𝐴𝑁). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((𝐴 + 1)↑𝑁) − (𝐴𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴𝑘)))
 
Theorembcxmaslem1 11429 Lemma for bcxmas 11430. (Contributed by Paul Chapman, 18-May-2007.)
(𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))
 
Theorembcxmas 11430* Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))
 
4.8.4  Infinite sums (cont.)
 
Theoremisumshft 11431* Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ‘(𝑀 + 𝐾))    &   (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
 
Theoremisumsplit 11432* Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
 
Theoremisum1p 11433* The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
 
Theoremisumnn0nn 11434* Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
(𝑘 = 0 → 𝐴 = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴))
 
Theoremisumrpcl 11435* The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
 
Theoremisumle 11436* Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝑍) → 𝐴𝐵)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
 
Theoremisumlessdc 11437* A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   (𝜑 → ∀𝑘𝑍 DECID 𝑘𝐴)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ 𝐵)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝐴 𝐵 ≤ Σ𝑘𝑍 𝐵)
 
4.8.5  Miscellaneous converging and diverging sequences
 
Theoremdivcnv 11438* The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
(𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0)
 
4.8.6  Arithmetic series
 
Theoremarisum 11439* Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
 
Theoremarisum2 11440* Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
 
Theoremtrireciplem 11441 Lemma for trirecip 11442. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))       seq1( + , 𝐹) ⇝ 1
 
Theoremtrirecip 11442 The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2
 
4.8.7  Geometric series
 
Theoremexpcnvap0 11443* A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)    &   (𝜑𝐴 # 0)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
Theoremexpcnvre 11444* A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
Theoremexpcnv 11445* A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)       (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 
Theoremexplecnv 11446* A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) < 1)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))       (𝜑𝐹 ⇝ 0)
 
Theoremgeosergap 11447* The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 1)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
 
Theoremgeoserap 11448* The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 1)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘) = ((1 − (𝐴𝑁)) / (1 − 𝐴)))
 
Theorempwm1geoserap1 11449* The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 # 1)       (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
 
Theoremabsltap 11450 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) < 𝐵)       (𝜑𝐴 # 𝐵)
 
Theoremabsgtap 11451 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵 < (abs‘𝐴))       (𝜑𝐴 # 𝐵)
 
Theoremgeolim 11452* The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2... converge to (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐴𝑘))       (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴)))
 
Theoremgeolim2 11453* The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) < 1)    &   (𝜑𝑀 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))       (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
 
Theoremgeoreclim 11454* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → 1 < (abs‘𝐴))    &   ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))       (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
 
Theoremgeo2sum 11455* The value of the finite geometric series 2↑-1 + 2↑-2 +... + 2↑-𝑁, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁))))
 
Theoremgeo2sum2 11456* The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
 
Theoremgeo2lim 11457* The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘)))       (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴)
 
Theoremgeoisum 11458* The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 / (1 − 𝐴)). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
 
Theoremgeoisumr 11459* The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1)))
 
Theoremgeoisum1 11460* The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴𝑘) = (𝐴 / (1 − 𝐴)))
 
Theoremgeoisum1c 11461* The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
 
Theorem0.999... 11462 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9 / 10↑3 + ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Σ𝑘 ∈ ℕ (9 / (10↑𝑘)) = 1
 
Theoremgeoihalfsum 11463 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11460. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11462 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
 
4.8.8  Ratio test for infinite series convergence
 
Theoremcvgratnnlembern 11464 Lemma for cvgratnn 11472. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
 
Theoremcvgratnnlemnexp 11465* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 15-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1))))
 
Theoremcvgratnnlemmn 11466* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 15-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘(𝐹𝑁)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑁𝑀))))
 
Theoremcvgratnnlemseq 11467* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
 
Theoremcvgratnnlemabsle 11468* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
 
Theoremcvgratnnlemsumlt 11469* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 23-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
 
Theoremcvgratnnlemfm 11470* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 23-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)       (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
 
Theoremcvgratnnlemrate 11471* Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 21-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
 
Theoremcvgratnn 11472* Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. Although this theorem is similar to cvgratz 11473 and cvgratgt0 11474, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11291 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
 
Theoremcvgratz 11473* Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremcvgratgt0 11474* Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
𝑍 = (ℤ𝑀)    &   𝑊 = (ℤ𝑁)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
4.8.9  Mertens' theorem
 
Theoremmertenslemub 11475* Lemma for mertensabs 11478. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜑𝑋𝑇)    &   (𝜑𝑆 ∈ ℕ)       (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
 
Theoremmertenslemi1 11476* Lemma for mertensabs 11478. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑𝐸 ∈ ℝ+)    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))    &   (𝜑𝑃 ∈ ℝ)    &   (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))    &   (𝜑 → 0 ≤ 𝑃)    &   (𝜑 → ∀𝑤𝑇 𝑤𝑃)       (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
 
Theoremmertenslem2 11477* Lemma for mertensabs 11478. (Contributed by Mario Carneiro, 28-Apr-2014.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑𝐸 ∈ ℝ+)    &   𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}    &   (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))       (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
 
Theoremmertensabs 11478* Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then 𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)    &   ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))    &   ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))    &   (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )    &   (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )       (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
 
4.8.10  Finite and infinite products
 
4.8.10.1  Product sequences
 
Theoremprodf 11479* An infinite product of complex terms is a function from an upper set of integers to . (Contributed by Scott Fenton, 4-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
 
Theoremclim2prod 11480* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)       (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
 
Theoremclim2divap 11481* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)    &   (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)       (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprod3fmul 11482* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁)))
 
Theoremprodf1 11483 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1)
 
Theoremprodf1f 11484 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
 
Theoremprodfclim1 11485 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) ⇝ 1)
 
Theoremprodfap0 11486* The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)       (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
 
Theoremprodfrecap 11487* The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprodfdivap 11488* The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
 
4.8.10.2  Non-trivial convergence
 
Theoremntrivcvgap 11489* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
 
Theoremntrivcvgap0 11490* A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   (𝜑𝑋 # 0)       (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
 
4.8.10.3  Complex products
 
Syntaxcprod 11491 Extend class notation to include complex products.
class 𝑘𝐴 𝐵
 
Definitiondf-proddc 11492* Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11295 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
 
Theoremprodeq1f 11493 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑘𝐴    &   𝑘𝐵       (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq1 11494* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
(𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremnfcprod1 11495* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐴       𝑘𝑘𝐴 𝐵
 
Theoremnfcprod 11496* Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑥𝐴    &   𝑥𝐵       𝑥𝑘𝐴 𝐵
 
Theoremprodeq2w 11497* Equality theorem for product, when the class expressions 𝐵 and 𝐶 are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2 11498* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘𝐴 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremcbvprod 11499* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)    &   𝑘𝐴    &   𝑗𝐴    &   𝑘𝐵    &   𝑗𝐶       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremcbvprodv 11500* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >