ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g GIF version

Theorem elpw2g 4189
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3614 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssexg 4172 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
3 elpwg 3613 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimparc 299 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
52, 4syldan 282 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
65expcom 116 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
71, 6impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  Vcvv 2763  wss 3157  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  elpw2  4190  pwnss  4192  ifelpwung  4516  pw2f1odclem  6895  elfir  7039  issubm  13104  issubg  13303  issubrng  13755  issubrg  13777  islssm  13913  islssmg  13914  lspval  13946  lspcl  13947  sraval  13993  istopg  14235  uniopn  14237  iscld  14339  ntrval  14346  clsval  14347  discld  14372  neival  14379  isnei  14380  restdis  14420  cnpfval  14431  cndis  14477  blfvalps  14621  blfps  14645  blf  14646  reldvg  14915
  Copyright terms: Public domain W3C validator