ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g GIF version

Theorem elpw2g 4204
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3626 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssexg 4187 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
3 elpwg 3625 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimparc 299 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
52, 4syldan 282 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
65expcom 116 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
71, 6impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2177  Vcvv 2773  wss 3167  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-pw 3619
This theorem is referenced by:  elpw2  4205  pwnss  4207  ifelpwung  4532  pw2f1odclem  6938  elfir  7082  issubm  13348  issubg  13553  issubrng  14005  issubrg  14027  islssm  14163  islssmg  14164  lspval  14196  lspcl  14197  sraval  14243  istopg  14515  uniopn  14517  iscld  14619  ntrval  14626  clsval  14627  discld  14652  neival  14659  isnei  14660  restdis  14700  cnpfval  14711  cndis  14757  blfvalps  14901  blfps  14925  blf  14926  reldvg  15195  2omap  16006
  Copyright terms: Public domain W3C validator