ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2g GIF version

Theorem elpw2g 4240
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
Assertion
Ref Expression
elpw2g (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpw2g
StepHypRef Expression
1 elpwi 3658 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2 ssexg 4223 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
3 elpwg 3657 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimparc 299 . . . 4 ((𝐴𝐵𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵)
52, 4syldan 282 . . 3 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ 𝒫 𝐵)
65expcom 116 . 2 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ 𝒫 𝐵))
71, 6impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  elpw2  4241  pwnss  4243  ifelpwung  4572  pw2f1odclem  7003  elfir  7148  issubm  13513  issubg  13718  issubrng  14171  issubrg  14193  islssm  14329  islssmg  14330  lspval  14362  lspcl  14363  sraval  14409  istopg  14681  uniopn  14683  iscld  14785  ntrval  14792  clsval  14793  discld  14818  neival  14825  isnei  14826  restdis  14866  cnpfval  14877  cndis  14923  blfvalps  15067  blfps  15091  blf  15092  reldvg  15361  2omap  16388  pw1map  16390
  Copyright terms: Public domain W3C validator