ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enfii GIF version

Theorem enfii 6932
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
StepHypRef Expression
1 enfi 6931 . 2 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
21biimparc 299 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164   class class class wbr 4030  cen 6794  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-er 6589  df-en 6797  df-fin 6799
This theorem is referenced by:  dif1en  6937  diffisn  6951  xpfi  6988  fisseneq  6990  fundmfi  6998  relcnvfi  7002  f1ofi  7004  f1dmvrnfibi  7005  f1finf1o  7008  en1eqsn  7009  exmidonfinlem  7255  fzfig  10504  hashennnuni  10853  hashennn  10854  summodclem2  11528  zsumdc  11530  prodmodclem2  11723  zproddc  11725  znfi  14154
  Copyright terms: Public domain W3C validator