| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enfii | GIF version | ||
| Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| enfii | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enfi 6996 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | |
| 2 | 1 | biimparc 299 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 class class class wbr 4059 ≈ cen 6848 Fincfn 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: dif1en 7002 diffisn 7016 xpfi 7055 fisseneq 7057 fundmfi 7065 relcnvfi 7069 f1ofi 7071 f1dmvrnfibi 7072 f1finf1o 7075 en1eqsn 7076 exmidonfinlem 7332 fzfig 10612 hashennnuni 10961 hashennn 10962 summodclem2 11808 zsumdc 11810 prodmodclem2 12003 zproddc 12005 znfi 14532 upgrfi 15813 |
| Copyright terms: Public domain | W3C validator |