ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enfii GIF version

Theorem enfii 6971
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
StepHypRef Expression
1 enfi 6970 . 2 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
21biimparc 299 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176   class class class wbr 4044  cen 6825  Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  dif1en  6976  diffisn  6990  xpfi  7029  fisseneq  7031  fundmfi  7039  relcnvfi  7043  f1ofi  7045  f1dmvrnfibi  7046  f1finf1o  7049  en1eqsn  7050  exmidonfinlem  7301  fzfig  10575  hashennnuni  10924  hashennn  10925  summodclem2  11693  zsumdc  11695  prodmodclem2  11888  zproddc  11890  znfi  14417
  Copyright terms: Public domain W3C validator