ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enfii GIF version

Theorem enfii 6775
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
enfii ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)

Proof of Theorem enfii
StepHypRef Expression
1 enfi 6774 . 2 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
21biimparc 297 1 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481   class class class wbr 3936  cen 6639  Fincfn 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-er 6436  df-en 6642  df-fin 6644
This theorem is referenced by:  dif1en  6780  diffisn  6794  xpfi  6825  fisseneq  6827  fundmfi  6833  relcnvfi  6836  f1ofi  6838  f1dmvrnfibi  6839  f1finf1o  6842  en1eqsn  6843  exmidonfinlem  7065  fzfig  10233  hashennnuni  10556  hashennn  10557  summodclem2  11182  zsumdc  11184  prodmodclem2  11377  zproddc  11379
  Copyright terms: Public domain W3C validator