ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 GIF version

Theorem eqfnfv2 5606
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4820 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
2 fndm 5307 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 fndm 5307 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
42, 3eqeqan12d 2191 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 = dom 𝐺𝐴 = 𝐵))
51, 4syl5ib 154 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺𝐴 = 𝐵))
65pm4.71rd 394 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵𝐹 = 𝐺)))
7 fneq2 5297 . . . . . 6 (𝐴 = 𝐵 → (𝐺 Fn 𝐴𝐺 Fn 𝐵))
87biimparc 299 . . . . 5 ((𝐺 Fn 𝐵𝐴 = 𝐵) → 𝐺 Fn 𝐴)
9 eqfnfv 5605 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9sylan2 286 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 Fn 𝐵𝐴 = 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1110anassrs 400 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐴 = 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
1211pm5.32da 452 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴 = 𝐵𝐹 = 𝐺) ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
136, 12bitrd 188 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wral 2453  dom cdm 4620   Fn wfn 5203  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216
This theorem is referenced by:  eqfnfv3  5607  eqfunfv  5610  eqfnov  5971  2ffzeq  10109
  Copyright terms: Public domain W3C validator