ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop2 GIF version

Theorem bastop2 12878
Description: A version of bastop1 12877 that doesn't have 𝐵𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2233 . . . . . . . 8 ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top))
21biimparc 297 . . . . . . 7 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top)
3 tgclb 12859 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
42, 3sylibr 133 . . . . . 6 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases)
5 bastg 12855 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
64, 5syl 14 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵))
7 simpr 109 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽)
86, 7sseqtrd 3185 . . . 4 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵𝐽)
98ex 114 . . 3 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽𝐵𝐽))
109pm4.71rd 392 . 2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽)))
11 bastop1 12877 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
1211pm5.32da 449 . 2 (𝐽 ∈ Top → ((𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
1310, 12bitrd 187 1 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wral 2448  wss 3121   cuni 3796  cfv 5198  topGenctg 12594  Topctop 12789  TopBasesctb 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600  df-top 12790  df-bases 12835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator